Trigonometry
-  If cos x + cos y = 2, the value of sin x + sin y is
- 
                        View Hint View Answer Discuss in Forum cosx + cosy = 2 
 ∵ cos x < 1
 ⇒ cos x = 1; cosy = 1
 ⇒ x = y = 0° [∵ Cos 0° = 1]
 ∴ sin x + sin y = 0Correct Option: Acosx + cosy = 2 
 ∵ cos x < 1
 ⇒ cos x = 1; cosy = 1
 ⇒ x = y = 0° [∵ Cos 0° = 1]
 ∴ sin x + sin y = 0
-  If tan θ + cot θ = 2, (0 ≤ θ ≤ 90°),then the value of sin θ is tan θ - cot θ 
- 
                        View Hint View Answer Discuss in Forum tan θ + cot θ = 2 tan θ - cot θ 1 
 By componendo and dividendo,2 tan θ = 3 2 cot θ 1 ⇒ sin θ . sin θ = 3 cos θ cos θ 
 &rArr sin² θ = 3cos² θ
 &rArr sin² θ = 3 (1 – sin² θ)
 &rArr 4 sin² θ = 3⇒ sin² θ = 3 4 ⇒ sin θ = √3 2 
 Correct Option: Btan θ + cot θ = 2 tan θ - cot θ 1 
 By componendo and dividendo,2 tan θ = 3 2 cot θ 1 ⇒ sin θ . sin θ = 3 cos θ cos θ 
 &rArr sin² θ = 3cos² θ
 &rArr sin² θ = 3 (1 – sin² θ)
 &rArr 4 sin² θ = 3⇒ sin² θ = 3 4 ⇒ sin θ = √3 2 
 
-  The value of tan 4°.tan 43°.tan 47°.tan 86° is
- 
                        View Hint View Answer Discuss in Forum tan 4°. tan 43°. tan 47°. tan 86° 
 = tan 4°. tan 43°. tan (90° – 43°).
 tan (90° – 4°)
 = tan 4° × tan 43° × cot 43° × cot 4° = 1
 [ tan (90° – q) = cot q; tan q. cot q = 1]Correct Option: Ctan 4°. tan 43°. tan 47°. tan 86° 
 = tan 4°. tan 43°. tan (90° – 43°).
 tan (90° – 4°)
 = tan 4° × tan 43° × cot 43° × cot 4° = 1
 [ tan (90° – q) = cot q; tan q. cot q = 1]
-  If cosec 39° = x, the value of (1 / cosec² 51°) + sin² 39°+ tan² 51° – (1 / sin² 51° sec² 39° is
- 
                        View Hint View Answer Discuss in Forum 1 + sin²39° + tan²51° - 1 cosec²51° sin²51°.sec²39° = sin²51° + sin²39° + tan²(90° – 39°) – 1 sin²(90° - 39°).sec²39° 
 [∵ sin (90° – θ) = cos θ
 tan (90° – θ) = cot θ]
 = 1 + cot²39° – 1
 = cosec² 39° – 1 = x² - 1Correct Option: C1 + sin²39° + tan²51° - 1 cosec²51° sin²51°.sec²39° = sin²51° + sin²39° + tan²(90° – 39°) – 1 sin²(90° - 39°).sec²39° 
 [∵ sin (90° – θ) = cos θ
 tan (90° – θ) = cot θ]
 = 1 + cot²39° – 1
 = cosec² 39° – 1 = x² - 1
-  The minimum value of 2 sin²θ+ 3 cos²θis
- 
                        View Hint View Answer Discuss in Forum 2 sin²θ + 3cos²θ 
 = 2 sin²θ + 2cos²θ + cos²θ
 = 2 (sin²θ + cos²θ) + cos²θ
 = 2 + cos² θ [∵ sin² θ + cos²θ =1]
 ∵ Minimum value of cos θ = –1
 But cos² θ > 0, when θ = 90°
 [∵ cos 0° = 1, cos 90° = 0]
 ∴ Required minimum value = 2 + 0 = 2Correct Option: C2 sin²θ + 3cos²θ 
 = 2 sin²θ + 2cos²θ + cos²θ
 = 2 (sin²θ + cos²θ) + cos²θ
 = 2 + cos² θ [∵ sin² θ + cos²θ =1]
 ∵ Minimum value of cos θ = –1
 But cos² θ > 0, when θ = 90°
 [∵ cos 0° = 1, cos 90° = 0]
 ∴ Required minimum value = 2 + 0 = 2
 
	