Trigonometry


  1. If cos x + cos y = 2, the value of sin x + sin y is









  1. View Hint View Answer Discuss in Forum

    cosx + cosy = 2
    ∵ cos x < 1
    ⇒ cos x = 1; cosy = 1
    ⇒ x = y = 0° [∵ Cos 0° = 1]
    ∴ sin x + sin y = 0

    Correct Option: A

    cosx + cosy = 2
    ∵ cos x < 1
    ⇒ cos x = 1; cosy = 1
    ⇒ x = y = 0° [∵ Cos 0° = 1]
    ∴ sin x + sin y = 0


  1. If
    tan θ + cot θ
    = 2, (0 ≤ θ ≤ 90°),then the value of sin θ is
    tan θ - cot θ









  1. View Hint View Answer Discuss in Forum

    tan θ + cot θ
    =
    2
    tan θ - cot θ1

    By componendo and dividendo,
    2 tan θ
    =
    3
    2 cot θ1

    sin θ
    .
    sin θ
    = 3
    cos θcos θ

    &rArr sin² θ = 3cos² θ
    &rArr sin² θ = 3 (1 – sin² θ)
    &rArr 4 sin² θ = 3
    ⇒ sin² θ =
    3
    4

    ⇒ sin θ =
    3
    2

    Correct Option: B

    tan θ + cot θ
    =
    2
    tan θ - cot θ1

    By componendo and dividendo,
    2 tan θ
    =
    3
    2 cot θ1

    sin θ
    .
    sin θ
    = 3
    cos θcos θ

    &rArr sin² θ = 3cos² θ
    &rArr sin² θ = 3 (1 – sin² θ)
    &rArr 4 sin² θ = 3
    ⇒ sin² θ =
    3
    4

    ⇒ sin θ =
    3
    2



  1. The value of tan 4°.tan 43°.tan 47°.tan 86° is









  1. View Hint View Answer Discuss in Forum

    tan 4°. tan 43°. tan 47°. tan 86°
    = tan 4°. tan 43°. tan (90° – 43°).
    tan (90° – 4°)
    = tan 4° × tan 43° × cot 43° × cot 4° = 1
    [ tan (90° – q) = cot q; tan q. cot q = 1]

    Correct Option: C

    tan 4°. tan 43°. tan 47°. tan 86°
    = tan 4°. tan 43°. tan (90° – 43°).
    tan (90° – 4°)
    = tan 4° × tan 43° × cot 43° × cot 4° = 1
    [ tan (90° – q) = cot q; tan q. cot q = 1]


  1. If cosec 39° = x, the value of (1 / cosec² 51°) + sin² 39°+ tan² 51° – (1 / sin² 51° sec² 39° is









  1. View Hint View Answer Discuss in Forum

    1
    + sin²39° + tan²51° -
    1
    cosec²51°sin²51°.sec²39°

    = sin²51° + sin²39° + tan²(90° – 39°) –
    1
    sin²(90° - 39°).sec²39°

    [∵ sin (90° – θ) = cos θ
    tan (90° – θ) = cot θ]
    = 1 + cot²39° – 1
    = cosec² 39° – 1 = x² - 1

    Correct Option: C

    1
    + sin²39° + tan²51° -
    1
    cosec²51°sin²51°.sec²39°

    = sin²51° + sin²39° + tan²(90° – 39°) –
    1
    sin²(90° - 39°).sec²39°

    [∵ sin (90° – θ) = cos θ
    tan (90° – θ) = cot θ]
    = 1 + cot²39° – 1
    = cosec² 39° – 1 = x² - 1



  1. The minimum value of 2 sin²θ+ 3 cos²θis









  1. View Hint View Answer Discuss in Forum

    2 sin²θ + 3cos²θ
    = 2 sin²θ + 2cos²θ + cos²θ
    = 2 (sin²θ + cos²θ) + cos²θ
    = 2 + cos² θ [∵ sin² θ + cos²θ =1]
    ∵ Minimum value of cos θ = –1
    But cos² θ > 0, when θ = 90°
    [∵ cos 0° = 1, cos 90° = 0]
    ∴ Required minimum value = 2 + 0 = 2

    Correct Option: C

    2 sin²θ + 3cos²θ
    = 2 sin²θ + 2cos²θ + cos²θ
    = 2 (sin²θ + cos²θ) + cos²θ
    = 2 + cos² θ [∵ sin² θ + cos²θ =1]
    ∵ Minimum value of cos θ = –1
    But cos² θ > 0, when θ = 90°
    [∵ cos 0° = 1, cos 90° = 0]
    ∴ Required minimum value = 2 + 0 = 2