Trigonometry
-  In a ∆ ABC, ∠B = (π / 3) , ∠C = (π / 4) and D divides BC internally in the ratio 1 : 3 then sin (sin ∠BAD / sin∠CAD) is equal to
- 
                        View Hint View Answer Discuss in Forum  ∠B = π , ∠ = π 3 4 and BD = 1 DC 3 
 From ∆ ABD,BD = AD sin BAD sin ABD ⇒ BD = AD sin BAD sin (π / 3) ⇒ BD = AD sin BAD (√3 / 2) ⇒ AD = √3 . BD ...(i) 2 sin BAD 
 From ∆ ADC,CD = AD sin DAC sin ACD ⇒ CD = AD sin DAC sin (π / 4) ⇒ AD = 1 . CD ...(ii) √2 sin DAC 
 From equations (i) and (ii),√3 . BD = 1 . CD 2 sin BAD √2 sin DAC  = sin BAD - √3 × √2 × 1 sin DAC 2 3 = 1 = 1 √2 × √3 √6 
 Correct Option: C ∠B = π , ∠ = π 3 4 and BD = 1 DC 3 
 From ∆ ABD,BD = AD sin BAD sin ABD ⇒ BD = AD sin BAD sin (π / 3) ⇒ BD = AD sin BAD (√3 / 2) ⇒ AD = √3 . BD ...(i) 2 sin BAD 
 From ∆ ADC,CD = AD sin DAC sin ACD ⇒ CD = AD sin DAC sin (π / 4) ⇒ AD = 1 . CD ...(ii) √2 sin DAC 
 From equations (i) and (ii),√3 . BD = 1 . CD 2 sin BAD √2 sin DAC  = sin BAD - √3 × √2 × 1 sin DAC 2 3 = 1 = 1 √2 × √3 √6 
 
-  If sin 3A = cos ( A – 26°), where 3A is an acute angle then the value of A is
- 
                        View Hint View Answer Discuss in Forum sin 3A = cos (A – 26°) 
 ⇒ cos (90° – 3A) = cos (A – 26°)
 ⇒ 90° – 3A = A – 26°
 ⇒ 90° + 26° = 3A + A
 ⇒ 4A = 116⇒A = 116 = 29° 4 
 Correct Option: Asin 3A = cos (A – 26°) 
 ⇒ cos (90° – 3A) = cos (A – 26°)
 ⇒ 90° – 3A = A – 26°
 ⇒ 90° + 26° = 3A + A
 ⇒ 4A = 116⇒A = 116 = 29° 4 
 
-  Value of sec² θ - sin² θ - 2sin 4 θ is 2cos4θ - cos² θ 
- 
                        View Hint View Answer Discuss in Forum sec²θ - sin²θ - 2sin4θ 2cos4θ - cos²θ sec²θ - sin²θ (1 - 2sin²θ) cos²θ(2cos²θ - 1) sec²θ - sin²θ (1 - 2(1 - 2sin²θ)) cos²θ(2cos²θ - 1) sec²θ - tan²θ (2 cos²θ - 1) 2 cos²θ - 1 
 = sec²θ - tan²θ = 1Correct Option: Asec²θ - sin²θ - 2sin4θ 2cos4θ - cos²θ sec²θ - sin²θ (1 - 2sin²θ) cos²θ(2cos²θ - 1) sec²θ - sin²θ (1 - 2(1 - 2sin²θ)) cos²θ(2cos²θ - 1) sec²θ - tan²θ (2 cos²θ - 1) 2 cos²θ - 1 
 = sec²θ - tan²θ = 1
-  If x = a (sinθ + cosθ), y = b (sinθ – cosθ) then the value ofx² + y² is a² b² 
- 
                        View Hint View Answer Discuss in Forum x = a (sinθ + cosθ) and 
 y = b (sinθ – cosθ)⇒ x = sin θ + cos θ and a y = sin θ - cos θ and b ∴ x² + y² = (sinθ + cosθ)² +(sinθ – cosθ) 
 2a² b² 
 = sin²θ + cos²θ + 2 sinθ.cosθ +
 sin²θ + cos²θ – 2sinθ . cosθ
 = 2 (sin²θ + cos²θ) = 2Correct Option: Cx = a (sinθ + cosθ) and 
 y = b (sinθ – cosθ)⇒ x = sin θ + cos θ and a y = sin θ - cos θ and b ∴ x² + y² = (sinθ + cosθ)² +(sinθ – cosθ) 
 2a² b² 
 = sin²θ + cos²θ + 2 sinθ.cosθ +
 sin²θ + cos²θ – 2sinθ . cosθ
 = 2 (sin²θ + cos²θ) = 2
-  If sin 5 θ = cos 20° ( 0° < θ < 90°) then the value of θ is
- 
                        View Hint View Answer Discuss in Forum sin 5θ = cos20° 
 ⇒ sin 5θ = sin (90 – 20) = sin 70°
 ⇒ 5θ = 70°⇒ θ = 70 = 14° 5 
 Correct Option: Dsin 5θ = cos20° 
 ⇒ sin 5θ = sin (90 – 20) = sin 70°
 ⇒ 5θ = 70°⇒ θ = 70 = 14° 5 
 
 
	