Trigonometry


  1. In a ∆ ABC, ∠B = (π / 3) , ∠C = (π / 4) and D divides BC internally in the ratio 1 : 3 then sin (sin ∠BAD / sin∠CAD) is equal to









  1. View Hint View Answer Discuss in Forum


    ∠B =
    π
    , ∠ =
    π
    34

    and
    BD
    =
    1
    DC3

    From ∆ ABD,
    BD
    =
    AD
    sin BADsin ABD

    BD
    =
    AD
    sin BADsin (π / 3)

    BD
    =
    AD
    sin BAD(√3 / 2)

    ⇒ AD =
    3
    .
    BD
    ...(i)
    2sin BAD

    From ∆ ADC,
    CD
    =
    AD
    sin DACsin ACD

    CD
    =
    AD
    sin DACsin (π / 4)

    ⇒ AD =
    1
    .
    CD
    ...(ii)
    2sin DAC

    From equations (i) and (ii),
    3
    .
    BD
    =
    1
    .
    CD
    2sin BAD2sin DAC


    =
    sin BAD
    -
    3
    × √2 ×
    1

    sin DAC23

    =
    1
    =
    1
    2 × √36

    Correct Option: C


    ∠B =
    π
    , ∠ =
    π
    34

    and
    BD
    =
    1
    DC3

    From ∆ ABD,
    BD
    =
    AD
    sin BADsin ABD

    BD
    =
    AD
    sin BADsin (π / 3)

    BD
    =
    AD
    sin BAD(√3 / 2)

    ⇒ AD =
    3
    .
    BD
    ...(i)
    2sin BAD

    From ∆ ADC,
    CD
    =
    AD
    sin DACsin ACD

    CD
    =
    AD
    sin DACsin (π / 4)

    ⇒ AD =
    1
    .
    CD
    ...(ii)
    2sin DAC

    From equations (i) and (ii),
    3
    .
    BD
    =
    1
    .
    CD
    2sin BAD2sin DAC


    =
    sin BAD
    -
    3
    × √2 ×
    1

    sin DAC23

    =
    1
    =
    1
    2 × √36


  1. If sin 3A = cos ( A – 26°), where 3A is an acute angle then the value of A is









  1. View Hint View Answer Discuss in Forum

    sin 3A = cos (A – 26°)
    ⇒ cos (90° – 3A) = cos (A – 26°)
    ⇒ 90° – 3A = A – 26°
    ⇒ 90° + 26° = 3A + A
    ⇒ 4A = 116

    ⇒A =
    116
    = 29°
    4

    Correct Option: A

    sin 3A = cos (A – 26°)
    ⇒ cos (90° – 3A) = cos (A – 26°)
    ⇒ 90° – 3A = A – 26°
    ⇒ 90° + 26° = 3A + A
    ⇒ 4A = 116

    ⇒A =
    116
    = 29°
    4



  1. Value of sec² θ -
    sin² θ - 2sin 4 θ
    is
    2cos4θ - cos² θ









  1. View Hint View Answer Discuss in Forum

    sec²θ -
    sin²θ - 2sin4θ
    2cos4θ - cos²θ

    sec²θ -
    sin²θ (1 - 2sin²θ)
    cos²θ(2cos²θ - 1)

    sec²θ -
    sin²θ (1 - 2(1 - 2sin²θ))
    cos²θ(2cos²θ - 1)

    sec²θ - tan²θ
    (2 cos²θ - 1)
    2 cos²θ - 1

    = sec²θ - tan²θ = 1

    Correct Option: A

    sec²θ -
    sin²θ - 2sin4θ
    2cos4θ - cos²θ

    sec²θ -
    sin²θ (1 - 2sin²θ)
    cos²θ(2cos²θ - 1)

    sec²θ -
    sin²θ (1 - 2(1 - 2sin²θ))
    cos²θ(2cos²θ - 1)

    sec²θ - tan²θ
    (2 cos²θ - 1)
    2 cos²θ - 1

    = sec²θ - tan²θ = 1


  1. If x = a (sinθ + cosθ), y = b (sinθ – cosθ) then the value of
    +
    is









  1. View Hint View Answer Discuss in Forum

    x = a (sinθ + cosθ) and
    y = b (sinθ – cosθ)

    x
    = sin θ + cos θ and
    a

    y
    = sin θ - cos θ and
    b

    +
    = (sinθ + cosθ)² +(sinθ – cosθ)
    2

    = sin²θ + cos²θ + 2 sinθ.cosθ +
    sin²θ + cos²θ – 2sinθ . cosθ
    = 2 (sin²θ + cos²θ) = 2

    Correct Option: C

    x = a (sinθ + cosθ) and
    y = b (sinθ – cosθ)

    x
    = sin θ + cos θ and
    a

    y
    = sin θ - cos θ and
    b

    +
    = (sinθ + cosθ)² +(sinθ – cosθ)
    2

    = sin²θ + cos²θ + 2 sinθ.cosθ +
    sin²θ + cos²θ – 2sinθ . cosθ
    = 2 (sin²θ + cos²θ) = 2



  1. If sin 5 θ = cos 20° ( 0° < θ < 90°) then the value of θ is









  1. View Hint View Answer Discuss in Forum

    sin 5θ = cos20°
    ⇒ sin 5θ = sin (90 – 20) = sin 70°
    ⇒ 5θ = 70°

    ⇒ θ =
    70
    = 14°
    5

    Correct Option: D

    sin 5θ = cos20°
    ⇒ sin 5θ = sin (90 – 20) = sin 70°
    ⇒ 5θ = 70°

    ⇒ θ =
    70
    = 14°
    5