Trigonometry
-  The value of  sinθ + sinφ + cosθ − cosφ  is : cosθ + cosφ sinθ − sinφ 
- 
                        View Hint View Answer Discuss in Forum Expression = sinθ + sinφ + cosθ - cosφ cosθ + cosφ sinθ - sinφ = (sinθ + sinφ)(sinθ - sinφ) + (cosθ - cosφ)(cosθ + cosφ) (cosθ + cosφ)(sinθ - sinφ) = sin²θ + sin²φ + cos²θ - cos²φ (cosθ + cosφ)(sinθ - sinφ) = (sin²θ + cos²θ) - (sinφθ + cos²φ) (cosθ + cosφ)(sinθ - sinφ) = 1 - 1 = 0 (cosθ + cosφ)(sinθ - sinφ) Correct Option: DExpression = sinθ + sinφ + cosθ - cosφ cosθ + cosφ sinθ - sinφ = (sinθ + sinφ)(sinθ - sinφ) + (cosθ - cosφ)(cosθ + cosφ) (cosθ + cosφ)(sinθ - sinφ) = sin²θ + sin²φ + cos²θ - cos²φ (cosθ + cosφ)(sinθ - sinφ) = (sin²θ + cos²θ) - (sinφθ + cos²φ) (cosθ + cosφ)(sinθ - sinφ) = 1 - 1 = 0 (cosθ + cosφ)(sinθ - sinφ) 
-  If tanθ = 8 , the value of √1 − sinθ is : 15 √1 + sinθ 
- 
                        View Hint View Answer Discuss in Forum tanθ = 8 15 
 ∴ sec2θ – tan2θ = 1
 ⇒ sec2θ = 1 + tan2θ= 1 +  8  2 15 = 1 + 64 = 225 + 64 = 289 225 225 225  = 1 − sinθ = secθ − tanθ cosθ cosθ = 17 − 8 15 15 = 17 − 8 = 9 = 3 15 15 5 Correct Option: Ctanθ = 8 15 
 ∴ sec2θ – tan2θ = 1
 ⇒ sec2θ = 1 + tan2θ= 1 +  8  2 15 = 1 + 64 = 225 + 64 = 289 225 225 225  = 1 − sinθ = secθ − tanθ cosθ cosθ = 17 − 8 15 15 = 17 − 8 = 9 = 3 15 15 5 
-  The value of sinθ + sinθ is : 1 + cosθ 1 − cosθ 
- 
                        View Hint View Answer Discuss in Forum Expression = sinθ + sinθ 1 + cosθ 1 − cosθ = sinθ(1 − cosθ) + sinθ(1 + cosθ) (1 + cosθ)(1 − cosθ) = 2sinθ = 2 = 2cosecθ sin2θ sinθ Correct Option: DExpression = sinθ + sinθ 1 + cosθ 1 − cosθ = sinθ(1 − cosθ) + sinθ(1 + cosθ) (1 + cosθ)(1 − cosθ) = 2sinθ = 2 = 2cosecθ sin2θ sinθ 
-  If tan 3θ. tan 7θ = 1, then the value of tan (θ + 36°) is :
- 
                        View Hint View Answer Discuss in Forum tan 3θ. tan 7θ = 1 ⇒ tan 3θ = 1 = cot7θ tan 7θ 
 ⇒ tan3θ = tan (90° – 7θ)
 ⇒ 3θ = 90° – 7θ
 ⇒ 3θ + 7θ = 90°
 ⇒ 10θ = 90° ⇒ θ = 9°
 ∴ tan (θ + 36°) = tan (9° + 36°)
 = tan 45° = 1Correct Option: Ctan 3θ. tan 7θ = 1 ⇒ tan 3θ = 1 = cot7θ tan 7θ 
 ⇒ tan3θ = tan (90° – 7θ)
 ⇒ 3θ = 90° – 7θ
 ⇒ 3θ + 7θ = 90°
 ⇒ 10θ = 90° ⇒ θ = 9°
 ∴ tan (θ + 36°) = tan (9° + 36°)
 = tan 45° = 1
-  The value of 8 (sin6θ + cos6θ) – 12 (sin4θ + cos4θ) is equal to
- 
                        View Hint View Answer Discuss in Forum 8 (sin6θ + cos6θ) – 12 (sin4θ + cos4θ) 
 = 8 {(sin2θ + cos2θ)3 – 3 sin2θ.cos2θ (sin2θ + cos2θ)} – 12 {(sin2θ + cos2θ)2 – 2 sin2θcos2θ)}
 = 8 (1 – 3 sin2θ . cos2θ) – 12 (1 – 2 sin2θ.cos2θ)
 = 8 – 24 sin2θ.cos2θ – 12 + 24sin2θ.cos2θ = –4Correct Option: C8 (sin6θ + cos6θ) – 12 (sin4θ + cos4θ) 
 = 8 {(sin2θ + cos2θ)3 – 3 sin2θ.cos2θ (sin2θ + cos2θ)} – 12 {(sin2θ + cos2θ)2 – 2 sin2θcos2θ)}
 = 8 (1 – 3 sin2θ . cos2θ) – 12 (1 – 2 sin2θ.cos2θ)
 = 8 – 24 sin2θ.cos2θ – 12 + 24sin2θ.cos2θ = –4
 
	