Trigonometry
-
The value of sinθ + sinφ + cosθ − cosφ is : cosθ + cosφ sinθ − sinφ
-
View Hint View Answer Discuss in Forum
Expression = sinθ + sinφ + cosθ - cosφ cosθ + cosφ sinθ - sinφ = (sinθ + sinφ)(sinθ - sinφ) + (cosθ - cosφ)(cosθ + cosφ) (cosθ + cosφ)(sinθ - sinφ) = sin²θ + sin²φ + cos²θ - cos²φ (cosθ + cosφ)(sinθ - sinφ) = (sin²θ + cos²θ) - (sinφθ + cos²φ) (cosθ + cosφ)(sinθ - sinφ) = 1 - 1 = 0 (cosθ + cosφ)(sinθ - sinφ) Correct Option: D
Expression = sinθ + sinφ + cosθ - cosφ cosθ + cosφ sinθ - sinφ = (sinθ + sinφ)(sinθ - sinφ) + (cosθ - cosφ)(cosθ + cosφ) (cosθ + cosφ)(sinθ - sinφ) = sin²θ + sin²φ + cos²θ - cos²φ (cosθ + cosφ)(sinθ - sinφ) = (sin²θ + cos²θ) - (sinφθ + cos²φ) (cosθ + cosφ)(sinθ - sinφ) = 1 - 1 = 0 (cosθ + cosφ)(sinθ - sinφ)
-
If tanθ = 8 , the value of √1 − sinθ is : 15 √1 + sinθ
-
View Hint View Answer Discuss in Forum
tanθ = 8 15
∴ sec2θ – tan2θ = 1
⇒ sec2θ = 1 + tan2θ= 1 + 8 2 15 = 1 + 64 = 225 + 64 = 289 225 225 225 = 1 − sinθ = secθ − tanθ cosθ cosθ = 17 − 8 15 15 = 17 − 8 = 9 = 3 15 15 5 Correct Option: C
tanθ = 8 15
∴ sec2θ – tan2θ = 1
⇒ sec2θ = 1 + tan2θ= 1 + 8 2 15 = 1 + 64 = 225 + 64 = 289 225 225 225 = 1 − sinθ = secθ − tanθ cosθ cosθ = 17 − 8 15 15 = 17 − 8 = 9 = 3 15 15 5
-
The value of sinθ + sinθ is : 1 + cosθ 1 − cosθ
-
View Hint View Answer Discuss in Forum
Expression = sinθ + sinθ 1 + cosθ 1 − cosθ = sinθ(1 − cosθ) + sinθ(1 + cosθ) (1 + cosθ)(1 − cosθ) = 2sinθ = 2 = 2cosecθ sin2θ sinθ Correct Option: D
Expression = sinθ + sinθ 1 + cosθ 1 − cosθ = sinθ(1 − cosθ) + sinθ(1 + cosθ) (1 + cosθ)(1 − cosθ) = 2sinθ = 2 = 2cosecθ sin2θ sinθ
- If tan 3θ. tan 7θ = 1, then the value of tan (θ + 36°) is :
-
View Hint View Answer Discuss in Forum
tan 3θ. tan 7θ = 1
⇒ tan 3θ = 1 = cot7θ tan 7θ
⇒ tan3θ = tan (90° – 7θ)
⇒ 3θ = 90° – 7θ
⇒ 3θ + 7θ = 90°
⇒ 10θ = 90° ⇒ θ = 9°
∴ tan (θ + 36°) = tan (9° + 36°)
= tan 45° = 1Correct Option: C
tan 3θ. tan 7θ = 1
⇒ tan 3θ = 1 = cot7θ tan 7θ
⇒ tan3θ = tan (90° – 7θ)
⇒ 3θ = 90° – 7θ
⇒ 3θ + 7θ = 90°
⇒ 10θ = 90° ⇒ θ = 9°
∴ tan (θ + 36°) = tan (9° + 36°)
= tan 45° = 1
- The value of 8 (sin6θ + cos6θ) – 12 (sin4θ + cos4θ) is equal to
-
View Hint View Answer Discuss in Forum
8 (sin6θ + cos6θ) – 12 (sin4θ + cos4θ)
= 8 {(sin2θ + cos2θ)3 – 3 sin2θ.cos2θ (sin2θ + cos2θ)} – 12 {(sin2θ + cos2θ)2 – 2 sin2θcos2θ)}
= 8 (1 – 3 sin2θ . cos2θ) – 12 (1 – 2 sin2θ.cos2θ)
= 8 – 24 sin2θ.cos2θ – 12 + 24sin2θ.cos2θ = –4Correct Option: C
8 (sin6θ + cos6θ) – 12 (sin4θ + cos4θ)
= 8 {(sin2θ + cos2θ)3 – 3 sin2θ.cos2θ (sin2θ + cos2θ)} – 12 {(sin2θ + cos2θ)2 – 2 sin2θcos2θ)}
= 8 (1 – 3 sin2θ . cos2θ) – 12 (1 – 2 sin2θ.cos2θ)
= 8 – 24 sin2θ.cos2θ – 12 + 24sin2θ.cos2θ = –4