Trigonometry


  1. The value of  
    sinθ + sinφ
    +
    cosθ − cosφ
      is :
    cosθ + cosφsinθ − sinφ









  1. View Hint View Answer Discuss in Forum

    Expression =
    sinθ + sinφ
    +
    cosθ - cosφ
    cosθ + cosφsinθ - sinφ

    =
    (sinθ + sinφ)(sinθ - sinφ) + (cosθ - cosφ)(cosθ + cosφ)
    (cosθ + cosφ)(sinθ - sinφ)

    =
    sin²θ + sin²φ + cos²θ - cos²φ
    (cosθ + cosφ)(sinθ - sinφ)

    =
    (sin²θ + cos²θ) - (sinφθ + cos²φ)
    (cosθ + cosφ)(sinθ - sinφ)

    =
    1 - 1
    = 0
    (cosθ + cosφ)(sinθ - sinφ)

    Correct Option: D

    Expression =
    sinθ + sinφ
    +
    cosθ - cosφ
    cosθ + cosφsinθ - sinφ

    =
    (sinθ + sinφ)(sinθ - sinφ) + (cosθ - cosφ)(cosθ + cosφ)
    (cosθ + cosφ)(sinθ - sinφ)

    =
    sin²θ + sin²φ + cos²θ - cos²φ
    (cosθ + cosφ)(sinθ - sinφ)

    =
    (sin²θ + cos²θ) - (sinφθ + cos²φ)
    (cosθ + cosφ)(sinθ - sinφ)

    =
    1 - 1
    = 0
    (cosθ + cosφ)(sinθ - sinφ)


  1. If   tanθ =
    8
    , the value of
    1 − sinθ
      is :
    151 + sinθ









  1. View Hint View Answer Discuss in Forum

    tanθ =
    8
    15

    ∴  sec2θ – tan2θ = 1
    ⇒  sec2θ = 1 + tan2θ
    = 1 +
    8
    2
    15

    = 1 +
    64
    =
    225 + 64
    =
    289
    225225225


    =
    1
    sinθ
    = secθ − tanθ
    cosθcosθ

    =
    17
    8
    1515

    =
    17 − 8
    =
    9
    =
    3
    15155

    Correct Option: C

    tanθ =
    8
    15

    ∴  sec2θ – tan2θ = 1
    ⇒  sec2θ = 1 + tan2θ
    = 1 +
    8
    2
    15

    = 1 +
    64
    =
    225 + 64
    =
    289
    225225225


    =
    1
    sinθ
    = secθ − tanθ
    cosθcosθ

    =
    17
    8
    1515

    =
    17 − 8
    =
    9
    =
    3
    15155



  1. The value of  
    sinθ
    +
    sinθ
      is :
    1 + cosθ1 − cosθ









  1. View Hint View Answer Discuss in Forum

    Expression =
    sinθ
    +
    sinθ
    1 + cosθ1 − cosθ

    =
    sinθ(1 − cosθ) + sinθ(1 + cosθ)
    (1 + cosθ)(1 − cosθ)

    =
    2sinθ
    =
    2
    = 2cosecθ
    sin2θsinθ

    Correct Option: D

    Expression =
    sinθ
    +
    sinθ
    1 + cosθ1 − cosθ

    =
    sinθ(1 − cosθ) + sinθ(1 + cosθ)
    (1 + cosθ)(1 − cosθ)

    =
    2sinθ
    =
    2
    = 2cosecθ
    sin2θsinθ


  1. If tan 3θ. tan 7θ = 1, then the value of tan (θ + 36°) is :









  1. View Hint View Answer Discuss in Forum

    tan 3θ. tan 7θ = 1

    ⇒  tan 3θ =
    1
    = cot7θ
    tan 7θ

    ⇒  tan3θ = tan (90° – 7θ)
    ⇒  3θ = 90° – 7θ
    ⇒  3θ + 7θ = 90°
    ⇒  10θ = 90° ⇒ θ = 9°
    ∴  tan (θ + 36°) = tan (9° + 36°)
    = tan 45° = 1

    Correct Option: C

    tan 3θ. tan 7θ = 1

    ⇒  tan 3θ =
    1
    = cot7θ
    tan 7θ

    ⇒  tan3θ = tan (90° – 7θ)
    ⇒  3θ = 90° – 7θ
    ⇒  3θ + 7θ = 90°
    ⇒  10θ = 90° ⇒ θ = 9°
    ∴  tan (θ + 36°) = tan (9° + 36°)
    = tan 45° = 1



  1. The value of 8 (sin6θ + cos6θ) – 12 (sin4θ + cos4θ) is equal to









  1. View Hint View Answer Discuss in Forum

    8 (sin6θ + cos6θ) – 12 (sin4θ + cos4θ)
    = 8 {(sin2θ + cos2θ)3 – 3 sin2θ.cos2θ (sin2θ + cos2θ)} – 12 {(sin2θ + cos2θ)2 – 2 sin2θcos2θ)}
    = 8 (1 – 3 sin2θ . cos2θ) – 12 (1 – 2 sin2θ.cos2θ)
    = 8 – 24 sin2θ.cos2θ – 12 + 24sin2θ.cos2θ = –4

    Correct Option: C

    8 (sin6θ + cos6θ) – 12 (sin4θ + cos4θ)
    = 8 {(sin2θ + cos2θ)3 – 3 sin2θ.cos2θ (sin2θ + cos2θ)} – 12 {(sin2θ + cos2θ)2 – 2 sin2θcos2θ)}
    = 8 (1 – 3 sin2θ . cos2θ) – 12 (1 – 2 sin2θ.cos2θ)
    = 8 – 24 sin2θ.cos2θ – 12 + 24sin2θ.cos2θ = –4