Trigonometry


  1. If 3sinθ + 5cosθ = 5, then 5sinθ – 3cosθis equal to









  1. View Hint View Answer Discuss in Forum

    3 sinθ + 5 cosθ = 5 ...(i)
    5 sinθ – 3 cosθ = x ...(ii)
    On squaring and adding, 9 sin²θ + 25 cos²θ + 25 sin²θ + 9 cos²θ = 25 + x²
    ⇒ 9 (sin²θ + cos²θ ) + 25 (cos²θ + sin²θ ) = 25 + x²
    ⇒ 9 + 25 = 25 + x²
    ⇒ x² = 9
    ⇒ x = ±3

    Correct Option: A

    3 sinθ + 5 cosθ = 5 ...(i)
    5 sinθ – 3 cosθ = x ...(ii)
    On squaring and adding, 9 sin²θ + 25 cos²θ + 25 sin²θ + 9 cos²θ = 25 + x²
    ⇒ 9 (sin²θ + cos²θ ) + 25 (cos²θ + sin²θ ) = 25 + x²
    ⇒ 9 + 25 = 25 + x²
    ⇒ x² = 9
    ⇒ x = ±3


  1. If sinθ + sin²θ = 1, then the value of cos²θ + cos4 θ is









  1. View Hint View Answer Discuss in Forum

    sinθ + sin²θ = 1
    ⇒ sinθ = 1 – sin²θ = cos²θ
    ∴ cos²θ + cos4θ
    = cos²θ + (cos²θ) 2
    = cos²θ + sin²θ = 1

    Correct Option: D

    sinθ + sin²θ = 1
    ⇒ sinθ = 1 – sin²θ = cos²θ
    ∴ cos²θ + cos4θ
    = cos²θ + (cos²θ) 2
    = cos²θ + sin²θ = 1



  1. If tan θ + cot θ = 2 then the value of θ is









  1. View Hint View Answer Discuss in Forum

    tan θ + cot θ = 2

    ⇒ tan θ +
    1
    = 2
    tan θ

    tan² θ + 1
    - 2
    tan θ

    ⇒ tan²θ + 1 = 2tanθ
    ⇒ tan²θ – 2 tan θ + 1 = 0
    ⇒ (tanθ – 1)² = 0
    ⇒ tan θ – 1 = 0
    ⇒ tan θ = 1 = tan 45°
    ⇒ θ = 45

    Correct Option: A

    tan θ + cot θ = 2

    ⇒ tan θ +
    1
    = 2
    tan θ

    tan² θ + 1
    - 2
    tan θ

    ⇒ tan²θ + 1 = 2tanθ
    ⇒ tan²θ – 2 tan θ + 1 = 0
    ⇒ (tanθ – 1)² = 0
    ⇒ tan θ – 1 = 0
    ⇒ tan θ = 1 = tan 45°
    ⇒ θ = 45


  1. If cos πx = x² – x + (5 / 4) , the value of x will be









  1. View Hint View Answer Discuss in Forum

    cosπx = x² - x +
    5
    4

    = x² - 2.x.
    1
    +
    1
    -
    1
    +
    5
    2444

    = x -
    1
    ² + 1 > 1
    2

    - 1 ≤ cosx ≤ 1

    Correct Option: D

    cosπx = x² - x +
    5
    4

    = x² - 2.x.
    1
    +
    1
    -
    1
    +
    5
    2444

    = x -
    1
    ² + 1 > 1
    2

    - 1 ≤ cosx ≤ 1



  1. The numerical value of 1 +
    1
    - sec² 27° +
    1
    - cosec² 27° is
    cot² 63°sin² 63°









  1. View Hint View Answer Discuss in Forum

    1 +
    1
    - sec²27° +
    1
    - cosec²27° = 1 + tan²63° - sec²27° + cosec²63° - cosec²27°
    cot²63°sin²63°

    = 1 + tan²(90° – 27°) – sec²27° + cosec2 (90° – 27°) – cosec²27°
    = 1 + cot²27° – sec²27° + sec²27° – cose²27°
    = 1 + cot²27° – cosec²27°
    = 1 – 1 = 0
    [∵ cosec²θ - cot²θ = 1]

    Correct Option: D

    1 +
    1
    - sec²27° +
    1
    - cosec²27° = 1 + tan²63° - sec²27° + cosec²63° - cosec²27°
    cot²63°sin²63°

    = 1 + tan²(90° – 27°) – sec²27° + cosec2 (90° – 27°) – cosec²27°
    = 1 + cot²27° – sec²27° + sec²27° – cose²27°
    = 1 + cot²27° – cosec²27°
    = 1 – 1 = 0
    [∵ cosec²θ - cot²θ = 1]