Trigonometry


  1. If x cos²30°. sin 60° =
    tan² 45° . sec 60°
    then the value of x is
    cosec 60°









  1. View Hint View Answer Discuss in Forum

    x.cos²30° . sin 60°

    =
    tan²45°.sec60°
    cosec 60°


    ⇒ x ×
    3
    ×
    3
    = √3
    42

    ⇒ x =
    3 × 8
    =
    8
    = 2
    2
    3√333

    Correct Option: C

    x.cos²30° . sin 60°

    =
    tan²45°.sec60°
    cosec 60°


    ⇒ x ×
    3
    ×
    3
    = √3
    42

    ⇒ x =
    3 × 8
    =
    8
    = 2
    2
    3√333


  1. If sin (θ + 30°) =
    3
    , then the value of cos²θ is
    12









  1. View Hint View Answer Discuss in Forum

    sin (θ + 30°) =
    3
    12

    =
    3
    =
    3
    2√32

    ⇒ sin (θ + 30°) = sin 60°
    ⇒ θ + 30° = 60°
    ⇒ θ = 60 – 30 = 30°
    ∴ cos²θ = cos²30°
    =
    3
    ² =
    3
    24

    Correct Option: C

    sin (θ + 30°) =
    3
    12

    =
    3
    =
    3
    2√32

    ⇒ sin (θ + 30°) = sin 60°
    ⇒ θ + 30° = 60°
    ⇒ θ = 60 – 30 = 30°
    ∴ cos²θ = cos²30°
    =
    3
    ² =
    3
    24



  1. If 0 ≤ θ ≤ 90° and 4 cos²θ – 4 √3 cos θ + 3 = 0 then the value of θ is









  1. View Hint View Answer Discuss in Forum

    4 cos²θ – 4√3 cosθ + 3 = 0
    ⇒ (2cosθ)2 – 2.2 cosθ. √3 + (√3)² = 0
    ⇒ (2cosθ – √3)² = 0
    ⇒ 2 cosθ – √3 = 0
    ⇒ 2 cosθ = √3

    ⇒ cosθ =
    3
    = cos 30°
    2

    ⇒ θ = 30°

    Correct Option: A

    4 cos²θ – 4√3 cosθ + 3 = 0
    ⇒ (2cosθ)2 – 2.2 cosθ. √3 + (√3)² = 0
    ⇒ (2cosθ – √3)² = 0
    ⇒ 2 cosθ – √3 = 0
    ⇒ 2 cosθ = √3

    ⇒ cosθ =
    3
    = cos 30°
    2

    ⇒ θ = 30°


  1. If sec θ – cos θ = (3 / 2) where θ is a positive acute angle, then the value of secθ is









  1. View Hint View Answer Discuss in Forum

    secθ – cosθ =
    3
    2

    ⇒ secθ –
    1
    =
    3
    secθ2

    sec²θ – 1
    =
    3
    secθ2

    ⇒ 2sec²θ – 2 = 3 secθ
    ⇒ 2 sec²θ – 3 secθ – 2 = 0
    ⇒ 2 sec²θ – 4 secθ + secθ – 2 = 0
    ⇒ 2 secθ (secθ – 2) + 1 (secθ – 2) = 0
    ⇒ (2 secθ + 1) (secθ – 2) = 0
    ⇒ secθ = 2 because 2 secθ + 1 ≠ 0
    θ is positive acute angle.

    Correct Option: C

    secθ – cosθ =
    3
    2

    ⇒ secθ –
    1
    =
    3
    secθ2

    sec²θ – 1
    =
    3
    secθ2

    ⇒ 2sec²θ – 2 = 3 secθ
    ⇒ 2 sec²θ – 3 secθ – 2 = 0
    ⇒ 2 sec²θ – 4 secθ + secθ – 2 = 0
    ⇒ 2 secθ (secθ – 2) + 1 (secθ – 2) = 0
    ⇒ (2 secθ + 1) (secθ – 2) = 0
    ⇒ secθ = 2 because 2 secθ + 1 ≠ 0
    θ is positive acute angle.



  1. If tan (5x – 10°) = cot (5y + 20°), the value of (x + y) is









  1. View Hint View Answer Discuss in Forum

    tan (5x – 10°) = cot (5y + 20°)
    ⇒ tan (5x – 10°) = tan (90° – (5y + 20°))
    ⇒ 5x – 10° = 90° – 5y – 20°
    ⇒ 5x + 5y =70° + 10°
    ⇒ 5 (x + y) = 80°

    ⇒ x + y =
    80°
    = 16°
    5

    Correct Option: B

    tan (5x – 10°) = cot (5y + 20°)
    ⇒ tan (5x – 10°) = tan (90° – (5y + 20°))
    ⇒ 5x – 10° = 90° – 5y – 20°
    ⇒ 5x + 5y =70° + 10°
    ⇒ 5 (x + y) = 80°

    ⇒ x + y =
    80°
    = 16°
    5