Trigonometry


  1. If cos²θ – sin²θ = (1 / 3) , where 0 ≤ q ≤ (π / 2) , then the value of cos4θ – sin4θ is









  1. View Hint View Answer Discuss in Forum

    cos² θ - sin² θ =
    1
    3

    cos4 θ – sin4 θ
    = (cos² θ + sin² θ) (cos² θ – sin² θ)
    = 1 ×
    1
    =
    1
    33

    Correct Option: A

    cos² θ - sin² θ =
    1
    3

    cos4 θ – sin4 θ
    = (cos² θ + sin² θ) (cos² θ – sin² θ)
    = 1 ×
    1
    =
    1
    33


  1. If tan θ =
    1
    and 0 , < θ <
    π
    , then the value of
    cosec² θ - sec² θ
    is
    112cosec² θ + sec² θ









  1. View Hint View Answer Discuss in Forum

    tan θ =
    1
    ; cotθ = √11
    11

    cosec²θ - sec²θ
    cosec²θ + sec²θ

    =
    1 + cot²θ - (1 - tan²θ)
    1 + cot²θ + 1 + tan²θ

    =
    cot²θ - tan²θ
    cot²θ + tan²θ + 2


    =
    120
    =
    5
    1446

    Correct Option: C

    tan θ =
    1
    ; cotθ = √11
    11

    cosec²θ - sec²θ
    cosec²θ + sec²θ

    =
    1 + cot²θ - (1 - tan²θ)
    1 + cot²θ + 1 + tan²θ

    =
    cot²θ - tan²θ
    cot²θ + tan²θ + 2


    =
    120
    =
    5
    1446



  1. The value of









  1. View Hint View Answer Discuss in Forum

    Expression =
    1
    sin
    π
    . cos
    26


    =
    1
    ×
    1
    ×
    1
    -
    1
    ×
    2
    +
    5 × 1

    2223312 × 1

    =
    1
    -
    2
    +
    5

    4312

    =
    3 - 8 + 5
    = 0
    12

    Correct Option: A

    Expression =
    1
    sin
    π
    . cos
    26


    =
    1
    ×
    1
    ×
    1
    -
    1
    ×
    2
    +
    5 × 1

    2223312 × 1

    =
    1
    -
    2
    +
    5

    4312

    =
    3 - 8 + 5
    = 0
    12


  1. If sin θ =
    3
    , then the value of
    tan θ + cos θ
    is equal to
    5cotθ + cosecθ









  1. View Hint View Answer Discuss in Forum

    sin θ =
    3
    5

    ∴ cosθ = √1 - sin²θ

    cot θ =
    1
    =
    4
    tan θ3

    cosec θ =
    1
    =
    5
    sin θ3


    =
    31
    ×
    3
    =
    31

    20960

    Correct Option: B

    sin θ =
    3
    5

    ∴ cosθ = √1 - sin²θ

    cot θ =
    1
    =
    4
    tan θ3

    cosec θ =
    1
    =
    5
    sin θ3


    =
    31
    ×
    3
    =
    31

    20960



  1. If a cos θ + b sin θ = p and a sin θ – b cos θ = q, then the relation between a, b, p and q is









  1. View Hint View Answer Discuss in Forum

    a cos θ + b sin θ = p a sin θ – b cos θ = θ
    On squaring and adding, a² cos² θ + b² sin² θ + 2 a b sin θ . cos θ + a² sin² θ + b² cos² θ – 2 a b sin θ. cos θ
    = p² + q²
    ⇒ a² cos² θ + a² sin² θ + b² sin² θ + b² cos² θ = p² + q²
    ⇒ a² (cos²θ + sin²θ) + b² (sin²θ + cos²θ ) = p² + q²
    ⇒ a² + b² = p² + q²

    Correct Option: B

    a cos θ + b sin θ = p a sin θ – b cos θ = θ
    On squaring and adding, a² cos² θ + b² sin² θ + 2 a b sin θ . cos θ + a² sin² θ + b² cos² θ – 2 a b sin θ. cos θ
    = p² + q²
    ⇒ a² cos² θ + a² sin² θ + b² sin² θ + b² cos² θ = p² + q²
    ⇒ a² (cos²θ + sin²θ) + b² (sin²θ + cos²θ ) = p² + q²
    ⇒ a² + b² = p² + q²