Trigonometry
- If cos²θ – sin²θ = (1 / 3) , where 0 ≤ q ≤ (π / 2) , then the value of cos4θ – sin4θ is
-
View Hint View Answer Discuss in Forum
cos² θ - sin² θ = 1 3
cos4 θ – sin4 θ
= (cos² θ + sin² θ) (cos² θ – sin² θ)= 1 × 1 = 1 3 3
Correct Option: A
cos² θ - sin² θ = 1 3
cos4 θ – sin4 θ
= (cos² θ + sin² θ) (cos² θ – sin² θ)= 1 × 1 = 1 3 3
-
If tan θ = 1 and 0 , < θ < π , then the value of cosec² θ - sec² θ is √11 2 cosec² θ + sec² θ
-
View Hint View Answer Discuss in Forum
tan θ = 1 ; cotθ = √11 √11 ∴ cosec²θ - sec²θ cosec²θ + sec²θ = 1 + cot²θ - (1 - tan²θ) 1 + cot²θ + 1 + tan²θ = cot²θ - tan²θ cot²θ + tan²θ + 2 = 120 = 5 144 6
Correct Option: C
tan θ = 1 ; cotθ = √11 √11 ∴ cosec²θ - sec²θ cosec²θ + sec²θ = 1 + cot²θ - (1 - tan²θ) 1 + cot²θ + 1 + tan²θ = cot²θ - tan²θ cot²θ + tan²θ + 2 = 120 = 5 144 6
- The value of
-
View Hint View Answer Discuss in Forum
Expression = 1 sin π . cos √2 6 = 1 × 1 × 1 - 1 × 2 + 5 × 1 √2 2 √2 √3 √3 12 × 1 = 1 - 2 + 5 4 3 12 = 3 - 8 + 5 = 0 12
Correct Option: A
Expression = 1 sin π . cos √2 6 = 1 × 1 × 1 - 1 × 2 + 5 × 1 √2 2 √2 √3 √3 12 × 1 = 1 - 2 + 5 4 3 12 = 3 - 8 + 5 = 0 12
-
If sin θ = 3 , then the value of tan θ + cos θ is equal to 5 cotθ + cosecθ
-
View Hint View Answer Discuss in Forum
sin θ = 3 5
∴ cosθ = √1 - sin²θcot θ = 1 = 4 tan θ 3 cosec θ = 1 = 5 sin θ 3 = 31 × 3 = 31 20 9 60
Correct Option: B
sin θ = 3 5
∴ cosθ = √1 - sin²θcot θ = 1 = 4 tan θ 3 cosec θ = 1 = 5 sin θ 3 = 31 × 3 = 31 20 9 60
- If a cos θ + b sin θ = p and a sin θ – b cos θ = q, then the relation between a, b, p and q is
-
View Hint View Answer Discuss in Forum
a cos θ + b sin θ = p a sin θ – b cos θ = θ
On squaring and adding, a² cos² θ + b² sin² θ + 2 a b sin θ . cos θ + a² sin² θ + b² cos² θ – 2 a b sin θ. cos θ
= p² + q²
⇒ a² cos² θ + a² sin² θ + b² sin² θ + b² cos² θ = p² + q²
⇒ a² (cos²θ + sin²θ) + b² (sin²θ + cos²θ ) = p² + q²
⇒ a² + b² = p² + q²Correct Option: B
a cos θ + b sin θ = p a sin θ – b cos θ = θ
On squaring and adding, a² cos² θ + b² sin² θ + 2 a b sin θ . cos θ + a² sin² θ + b² cos² θ – 2 a b sin θ. cos θ
= p² + q²
⇒ a² cos² θ + a² sin² θ + b² sin² θ + b² cos² θ = p² + q²
⇒ a² (cos²θ + sin²θ) + b² (sin²θ + cos²θ ) = p² + q²
⇒ a² + b² = p² + q²