Trigonometry


  1. If sinθ + sin²θ = 1, then the value of cos2 θ + 3 cos10 θ + 3 cos8 θ + cos6 θ – 1 is









  1. View Hint View Answer Discuss in Forum

    sinθ + sin²θ = 1
    ⇒ sinθ = 1 – sin²θ = cos²θ
    Now, cos12θ + 3 cos10q + 3 cos8θ + cos6θ – 1
    = (cos4θ + cos2θ)³ – 1
    = (sin²θ + cos²2θ)³ – 1
    = 1 – 1 = 0

    Correct Option: D

    sinθ + sin²θ = 1
    ⇒ sinθ = 1 – sin²θ = cos²θ
    Now, cos12θ + 3 cos10q + 3 cos8θ + cos6θ – 1
    = (cos4θ + cos2θ)³ – 1
    = (sin²θ + cos²2θ)³ – 1
    = 1 – 1 = 0


  1. The value of tan 11° tan 17° tan 79° tan 73° is









  1. View Hint View Answer Discuss in Forum

    tan 11°.tan 17°.tan 79°.tan 73°
    = tan 11°.tan 17°.tan (90° – 11°). tan (90° – 17°)
    = tan 11°.tan 17°.cot 11°.cot 17°
    = tan 11°.cot11°.tan17°.cot 17°
    = 1 × 1 = 1 [∵ tan (90° – θ)
    = cotθ; tanθ . cotθ = 1]

    Correct Option: C

    tan 11°.tan 17°.tan 79°.tan 73°
    = tan 11°.tan 17°.tan (90° – 11°). tan (90° – 17°)
    = tan 11°.tan 17°.cot 11°.cot 17°
    = tan 11°.cot11°.tan17°.cot 17°
    = 1 × 1 = 1 [∵ tan (90° – θ)
    = cotθ; tanθ . cotθ = 1]



  1. If for any acute angle A, sin A + sin² A = 1, then the value of cos² A + cos4 A is









  1. View Hint View Answer Discuss in Forum

    sin A + sin²A = 1
    ⇒ sin A = 1 – sin²A = cos²A
    ∴ cos²A + cos4A
    = cos²A + (cos²A)²
    = cos²A + sin²A = 1

    Correct Option: B

    sin A + sin²A = 1
    ⇒ sin A = 1 – sin²A = cos²A
    ∴ cos²A + cos4A
    = cos²A + (cos²A)²
    = cos²A + sin²A = 1


  1. If sin θ + cos θ = √2 sin (90° – θ), then the value of cot θ is









  1. View Hint View Answer Discuss in Forum

    sinθ + cosθ = √2 sin (90° – θ)
    ⇒ sinθ + cosθ = √2 cosθ
    ⇒ sinθ = √2 cosθ – cosθ
    ⇒ sinθ = cosθ ( √2 –1)

    cos θ
    =
    1
    sin θ2 - 1

    ⇒ cot θ =
    1
    2 - 1

    ⇒ cot θ =
    1
    ×
    (√2 + 1)
    2 - 1(√2 + 1)

    =
    2 + 1
    = √2 + 1
    2 - 1

    Correct Option: C

    sinθ + cosθ = √2 sin (90° – θ)
    ⇒ sinθ + cosθ = √2 cosθ
    ⇒ sinθ = √2 cosθ – cosθ
    ⇒ sinθ = cosθ ( √2 –1)

    cos θ
    =
    1
    sin θ2 - 1

    ⇒ cot θ =
    1
    2 - 1

    ⇒ cot θ =
    1
    ×
    (√2 + 1)
    2 - 1(√2 + 1)

    =
    2 + 1
    = √2 + 1
    2 - 1



  1. If θ is a positive acute angle and 3 (sec²θ + tan²θ) = 5, then the value of cos 2θ is









  1. View Hint View Answer Discuss in Forum

    (sec²θ + tan²θ) = 5

    ⇒ sec²θ + tan²θ =
    5
    3

    ⇒ sec²θ + sec²θ - 1 =
    5
    3

    ⇒ 2 sec²θ =
    5
    + 1 =
    8
    33

    ⇒ sec²θ =
    4
    ⇒ secθ =
    2
    33

    ⇒ cosθ =
    3
    = cos 30°
    2

    ⇒ θ = 30°
    ∴ cos 2θ = cos 60° =
    1
    2

    Correct Option: A

    (sec²θ + tan²θ) = 5

    ⇒ sec²θ + tan²θ =
    5
    3

    ⇒ sec²θ + sec²θ - 1 =
    5
    3

    ⇒ 2 sec²θ =
    5
    + 1 =
    8
    33

    ⇒ sec²θ =
    4
    ⇒ secθ =
    2
    33

    ⇒ cosθ =
    3
    = cos 30°
    2

    ⇒ θ = 30°
    ∴ cos 2θ = cos 60° =
    1
    2