Trigonometry


  1. If tan θ =
    3
    , then the value of
    4sin²θ - 2cos²θ
    is equal to
    44sin²θ + 3cos²θ









  1. View Hint View Answer Discuss in Forum

    tan θ =
    3
    ⇒ tan² θ =
    9
    416

    Expression
    =
    4sin² θ - 2 cos² θ
    4sin² θ - 3 cos² θ


    =
    4tan² θ - 2
    4tan² θ + 3


    Correct Option: A

    tan θ =
    3
    ⇒ tan² θ =
    9
    416

    Expression
    =
    4sin² θ - 2 cos² θ
    4sin² θ - 3 cos² θ


    =
    4tan² θ - 2
    4tan² θ + 3



  1. If
    cos α
    = a,
    sin α
    = b, then sin²β is equal to
    cosβsinβ









  1. View Hint View Answer Discuss in Forum

    cosα
    = a
    cosβ

    cos²α
    = a²
    cos²β

    1 - sin²α
    = a²
    1 - sin²β

    ⇒ 1 – sin²α = α² (1 – sin²β)
    ⇒1 – b² sin²β = a² – a² sin²β
    ⇒ 1 – a² = b ²sin²β – a² sin²β
    ⇒ 1 – a² = (b² – a² ) sin²β
    ⇒ sin²β =
    1 - a²
    =
    a² - 1
    b² - a²a² - b²

    Correct Option: C

    cosα
    = a
    cosβ

    cos²α
    = a²
    cos²β

    1 - sin²α
    = a²
    1 - sin²β

    ⇒ 1 – sin²α = α² (1 – sin²β)
    ⇒1 – b² sin²β = a² – a² sin²β
    ⇒ 1 – a² = b ²sin²β – a² sin²β
    ⇒ 1 – a² = (b² – a² ) sin²β
    ⇒ sin²β =
    1 - a²
    =
    a² - 1
    b² - a²a² - b²



  1. If cos θ =
    3
    then the value of sinθ . secθ . tanθ is
    5









  1. View Hint View Answer Discuss in Forum

    cos θ =
    3
    5

    ∴ sec θ =
    5
    3

    ∴ tan θ = √sec² θ - 1

    =
    4
    3

    ∴ sinθ . secθ . tanθ =
    sin θ
    . tan θ
    cos θ

    = tan²θ =4 ² =16
    39

    Correct Option: B

    cos θ =
    3
    5

    ∴ sec θ =
    5
    3

    ∴ tan θ = √sec² θ - 1

    =
    4
    3

    ∴ sinθ . secθ . tanθ =
    sin θ
    . tan θ
    cos θ

    = tan²θ =4 ² =16
    39


  1. If √3 tan θ = 3 sin θ, then the value of (sin²θ – cos²θ) is









  1. View Hint View Answer Discuss in Forum

    3 tanθ = 3 sinθ

    ⇒√3
    sinθ
    = 3 sinθ
    cosθ

    ⇒ √3 = 3 cosθ
    ⇒ cosθ =
    3
    =
    1
    33

    ∴ sinθ = √1 - cos²θ

    =
    2
    -
    1
    =
    1

    333

    Correct Option: C

    3 tanθ = 3 sinθ

    ⇒√3
    sinθ
    = 3 sinθ
    cosθ

    ⇒ √3 = 3 cosθ
    ⇒ cosθ =
    3
    =
    1
    33

    ∴ sinθ = √1 - cos²θ

    =
    2
    -
    1
    =
    1

    333



  1. If sin(A + B) = sin A cos B + cos A sin B, then the value of sin75° is









  1. View Hint View Answer Discuss in Forum

    A = 45°, B = 30° (let)
    ∴ sin (A + B) = sinA . cosB + cosA . sinB
    ⇒ sin(45° + 30°)
    = sin45°. cos30° + cos45° . sin30°

    =
    1
    ×
    3
    +
    1
    ×
    1

    2222

    =
    3
    +
    1
    =
    3 + 1

    2√22√22√2

    Correct Option: C

    A = 45°, B = 30° (let)
    ∴ sin (A + B) = sinA . cosB + cosA . sinB
    ⇒ sin(45° + 30°)
    = sin45°. cos30° + cos45° . sin30°

    =
    1
    ×
    3
    +
    1
    ×
    1

    2222

    =
    3
    +
    1
    =
    3 + 1

    2√22√22√2