Trigonometry


  1. If x = a (sin θ + cos θ) and y = b (sin θ – cos θ), then the value of
    +
    is :









  1. View Hint View Answer Discuss in Forum

    x = a (sinθ + cosθ)

    x
    = sinθ + cosθ
    a

    and, y = b (sinθ – cosθ)
    y
    = sinθ - cosθ
    b

    +

    = (sinθ + cosθ)² + (sinθ – cosθ)² = 2 (sin²θ + cos²θ) = 2 [∵ (a + b)² + (a – b)² = 2 (a² + b² )]

    Correct Option: D

    x = a (sinθ + cosθ)

    x
    = sinθ + cosθ
    a

    and, y = b (sinθ – cosθ)
    y
    = sinθ - cosθ
    b

    +

    = (sinθ + cosθ)² + (sinθ – cosθ)² = 2 (sin²θ + cos²θ) = 2 [∵ (a + b)² + (a – b)² = 2 (a² + b² )]


  1. The value of the expression sin²1° + sin²11° + sin²21° + sin²31° + sin²41° + sin²45° + sin²49° + sin²59° + sin²69° + sin²79° + sin²89° is :









  1. View Hint View Answer Discuss in Forum

    sin 89° = sin (90°–1°) = cos 1°
    sin 79° = sin (90°–11°) = cos 11°
    sin 69° = sin (90°–21°) = cos 21°
    sin 59° = sin (90°–31°) = cos 31°
    sin 49° = sin (90°–41°) = cos 41°
    ∴ Expression
    = (sin²1° + cos²1°) + (sin²11° + cos²11°) + (sin²21° + cos²21°) + (sin²31° + cos²31°) + (sin²41° + cos²41°) + sin²45°

    [∵ sin²θ + cos²θ = 1]

    Correct Option: B

    sin 89° = sin (90°–1°) = cos 1°
    sin 79° = sin (90°–11°) = cos 11°
    sin 69° = sin (90°–21°) = cos 21°
    sin 59° = sin (90°–31°) = cos 31°
    sin 49° = sin (90°–41°) = cos 41°
    ∴ Expression
    = (sin²1° + cos²1°) + (sin²11° + cos²11°) + (sin²21° + cos²21°) + (sin²31° + cos²31°) + (sin²41° + cos²41°) + sin²45°

    [∵ sin²θ + cos²θ = 1]



  1. Value of the expression :
    1 + 2sin 60° cos60°
    +
    1 - 2sin 60° cos60°
    is
    sin 60° + cos60°sin 60° - cos60°









  1. View Hint View Answer Discuss in Forum

    Expression

    2 + √3
    +
    2 - √3
    3
    + 1
    3
    - 1

    =
    (2 + √3)(√3 - 1) + (√3 + 1)(2 - √3)
    (√3 + 1)(√3 - 1)

    =
    2√3 - + 3 - √3 + 2√3 - + 2 - √3
    3 - 1

    =
    4√3
    - 2√3
    =
    2√3
    = √3
    22

    Correct Option: C

    Expression

    2 + √3
    +
    2 - √3
    3
    + 1
    3
    - 1

    =
    (2 + √3)(√3 - 1) + (√3 + 1)(2 - √3)
    (√3 + 1)(√3 - 1)

    =
    2√3 - + 3 - √3 + 2√3 - + 2 - √3
    3 - 1

    =
    4√3
    - 2√3
    =
    2√3
    = √3
    22


  1. The angle of elevation of an aeroplane from a point on the ground is 45°. After flying for 15 seconds, the elevation changes to 30°. If the aeroplane is flying at a height of 2500 metres, then the speed of the aeroplane in km/ hr. is









  1. View Hint View Answer Discuss in Forum


    Let A and C be the positions of plane.
    AB = CD = 2500 metre
    BD = AC = x metre (let)
    ∠AOB = 60° ; ∠COD = 30°
    In ∆OAB,
    ⇒ OB = 2500 metre
    In ∆OCD,

    tan30° =
    CD
    OD

    1
    3

    =
    2500
    2500 + x

    ⇒ 2500 + x = 2500√3
    ⇒ x
    = 2500 √3 – 2500
    = 2500 (√3 - 1) metre
    Time = 15 seconds
    =
    15
    hour =
    1
    hour
    60 × 60240

    ∴ Speed of plane =
    2500 (√3 - 1)
    × 240 kmph
    1000

    = 600 (√3 - 1) kmph.

    Correct Option: D


    Let A and C be the positions of plane.
    AB = CD = 2500 metre
    BD = AC = x metre (let)
    ∠AOB = 60° ; ∠COD = 30°
    In ∆OAB,
    ⇒ OB = 2500 metre
    In ∆OCD,

    tan30° =
    CD
    OD

    1
    3

    =
    2500
    2500 + x

    ⇒ 2500 + x = 2500√3
    ⇒ x
    = 2500 √3 – 2500
    = 2500 (√3 - 1) metre
    Time = 15 seconds
    =
    15
    hour =
    1
    hour
    60 × 60240

    ∴ Speed of plane =
    2500 (√3 - 1)
    × 240 kmph
    1000

    = 600 (√3 - 1) kmph.



  1. A vertical tower stands on a horizontal plane and is surmounted by a vertical flag staff of height h. At a point on the plane, the angle of elevation of the bottom of the flag staff is a and that of the top of the flag staff is β. Then the height of the tower is









  1. View Hint View Answer Discuss in Forum


    Let height of tower = BC = y metre
    AB = height of flag-staff = h metre
    ∠BDC = a; ∠ADC = b
    Let, CD = x metre
    In ∆BCD,

    tan α =
    BC
    CD

    ⇒ tan α =
    y
    ..... (i)
    x

    In ∆ACD,
    tan β =
    AC
    CD

    ⇒ tan β =
    h + y
    x

    ⇒ x =
    h + y
    ..... (ii)
    tanβ

    y
    =
    h + y
    tanαtanβ

    ⇒ y tan β = h tanα + y tanα
    ⇒ y tanβ – y tanα = h tanα
    ⇒ y (tanβ – tanα) = h tanα
    ⇒ y =
    h tan α
    tanβ - tanα

    Correct Option: B


    Let height of tower = BC = y metre
    AB = height of flag-staff = h metre
    ∠BDC = a; ∠ADC = b
    Let, CD = x metre
    In ∆BCD,

    tan α =
    BC
    CD

    ⇒ tan α =
    y
    ..... (i)
    x

    In ∆ACD,
    tan β =
    AC
    CD

    ⇒ tan β =
    h + y
    x

    ⇒ x =
    h + y
    ..... (ii)
    tanβ

    y
    =
    h + y
    tanαtanβ

    ⇒ y tan β = h tanα + y tanα
    ⇒ y tanβ – y tanα = h tanα
    ⇒ y (tanβ – tanα) = h tanα
    ⇒ y =
    h tan α
    tanβ - tanα