Trigonometry
-  If x = a (sin θ + cos θ) and y = b (sin θ – cos θ), then the value ofx² + y² is : a² b² 
- 
                        View Hint View Answer Discuss in Forum x = a (sinθ + cosθ) ⇒ x = sinθ + cosθ a 
 and, y = b (sinθ – cosθ)⇒ y = sinθ - cosθ b ∴ x² + y² a² b² 
 = (sinθ + cosθ)² + (sinθ – cosθ)² = 2 (sin²θ + cos²θ) = 2 [∵ (a + b)² + (a – b)² = 2 (a² + b² )]
 Correct Option: Dx = a (sinθ + cosθ) ⇒ x = sinθ + cosθ a 
 and, y = b (sinθ – cosθ)⇒ y = sinθ - cosθ b ∴ x² + y² a² b² 
 = (sinθ + cosθ)² + (sinθ – cosθ)² = 2 (sin²θ + cos²θ) = 2 [∵ (a + b)² + (a – b)² = 2 (a² + b² )]
 
-  The value of the expression sin²1° + sin²11° + sin²21° + sin²31° + sin²41° + sin²45° + sin²49° + sin²59° + sin²69° + sin²79° + sin²89° is :
- 
                        View Hint View Answer Discuss in Forum sin 89° = sin (90°–1°) = cos 1° 
 sin 79° = sin (90°–11°) = cos 11°
 sin 69° = sin (90°–21°) = cos 21°
 sin 59° = sin (90°–31°) = cos 31°
 sin 49° = sin (90°–41°) = cos 41°
 ∴ Expression
 = (sin²1° + cos²1°) + (sin²11° + cos²11°) + (sin²21° + cos²21°) + (sin²31° + cos²31°) + (sin²41° + cos²41°) + sin²45° 
 [∵ sin²θ + cos²θ = 1]Correct Option: Bsin 89° = sin (90°–1°) = cos 1° 
 sin 79° = sin (90°–11°) = cos 11°
 sin 69° = sin (90°–21°) = cos 21°
 sin 59° = sin (90°–31°) = cos 31°
 sin 49° = sin (90°–41°) = cos 41°
 ∴ Expression
 = (sin²1° + cos²1°) + (sin²11° + cos²11°) + (sin²21° + cos²21°) + (sin²31° + cos²31°) + (sin²41° + cos²41°) + sin²45° 
 [∵ sin²θ + cos²θ = 1]
-  Value of the expression : 1 + 2sin 60° cos60° + 1 - 2sin 60° cos60° is sin 60° + cos60° sin 60° - cos60° 
- 
                        View Hint View Answer Discuss in Forum Expression  2 + √3 + 2 - √3 √3 
 + 1√3 
 - 1= (2 + √3)(√3 - 1) + (√3 + 1)(2 - √3) (√3 + 1)(√3 - 1) = 2√3 - + 3 - √3 + 2√3 - + 2 - √3 3 - 1 = 4√3 
 - 2√3= 2√3 = √3 2 2 
 Correct Option: CExpression  2 + √3 + 2 - √3 √3 
 + 1√3 
 - 1= (2 + √3)(√3 - 1) + (√3 + 1)(2 - √3) (√3 + 1)(√3 - 1) = 2√3 - + 3 - √3 + 2√3 - + 2 - √3 3 - 1 = 4√3 
 - 2√3= 2√3 = √3 2 2 
 
-  The angle of elevation of an aeroplane from a point on the ground is 45°. After flying for 15 seconds, the elevation changes to 30°. If the aeroplane is flying at a height of 2500 metres, then the speed of the aeroplane in km/ hr. is
- 
                        View Hint View Answer Discuss in Forum  
 Let A and C be the positions of plane.
 AB = CD = 2500 metre
 BD = AC = x metre (let)
 ∠AOB = 60° ; ∠COD = 30°
 In ∆OAB,
 ⇒ OB = 2500 metre
 In ∆OCD,tan30° = CD OD ⇒ 1 √3 = 2500 2500 + x 
 ⇒ 2500 + x = 2500√3
 ⇒ x
 = 2500 √3 – 2500
 = 2500 (√3 - 1) metre
 Time = 15 seconds= 15 hour = 1 hour 60 × 60 240 ∴ Speed of plane = 2500 (√3 - 1) × 240 kmph 1000 
 = 600 (√3 - 1) kmph.Correct Option: D 
 Let A and C be the positions of plane.
 AB = CD = 2500 metre
 BD = AC = x metre (let)
 ∠AOB = 60° ; ∠COD = 30°
 In ∆OAB,
 ⇒ OB = 2500 metre
 In ∆OCD,tan30° = CD OD ⇒ 1 √3 = 2500 2500 + x 
 ⇒ 2500 + x = 2500√3
 ⇒ x
 = 2500 √3 – 2500
 = 2500 (√3 - 1) metre
 Time = 15 seconds= 15 hour = 1 hour 60 × 60 240 ∴ Speed of plane = 2500 (√3 - 1) × 240 kmph 1000 
 = 600 (√3 - 1) kmph.
-  A vertical tower stands on a horizontal plane and is surmounted by a vertical flag staff of height h. At a point on the plane, the angle of elevation of the bottom of the flag staff is a and that of the top of the flag staff is β. Then the height of the tower is
- 
                        View Hint View Answer Discuss in Forum   
 Let height of tower = BC = y metre
 AB = height of flag-staff = h metre
 ∠BDC = a; ∠ADC = b
 Let, CD = x metre
 In ∆BCD,tan α = BC CD ⇒ tan α = y ..... (i) x 
 In ∆ACD,tan β = AC CD ⇒ tan β = h + y x ⇒ x = h + y ..... (ii) tanβ ∴ y = h + y tanα tanβ 
 ⇒ y tan β = h tanα + y tanα
 ⇒ y tanβ – y tanα = h tanα
 ⇒ y (tanβ – tanα) = h tanα⇒ y = h tan α tanβ - tanα 
 Correct Option: B  
 Let height of tower = BC = y metre
 AB = height of flag-staff = h metre
 ∠BDC = a; ∠ADC = b
 Let, CD = x metre
 In ∆BCD,tan α = BC CD ⇒ tan α = y ..... (i) x 
 In ∆ACD,tan β = AC CD ⇒ tan β = h + y x ⇒ x = h + y ..... (ii) tanβ ∴ y = h + y tanα tanβ 
 ⇒ y tan β = h tanα + y tanα
 ⇒ y tanβ – y tanα = h tanα
 ⇒ y (tanβ – tanα) = h tanα⇒ y = h tan α tanβ - tanα 
 
 
	