Trigonometry


  1. If tan 45° = cotθ, then the value of θ, in radians is









  1. View Hint View Answer Discuss in Forum

    tan 45° = cotθ
    ⇒  tan 45° = tan (90° – θ)
    ⇒  45° = 90° – θ
    ⇒  θ = 90° – 45° = 45°
    ∵  180° = π radian

    ∴  45° =
    π
    × 45°
    180

    =
    π
    radian
    4

    Correct Option: C

    tan 45° = cotθ
    ⇒  tan 45° = tan (90° – θ)
    ⇒  45° = 90° – θ
    ⇒  θ = 90° – 45° = 45°
    ∵  180° = π radian

    ∴  45° =
    π
    × 45°
    180

    =
    π
    radian
    4


  1. ABC is a triangle. If sin
    A + B
    =
    3
    , then the value of sin (C/2) is
    22









  1. View Hint View Answer Discuss in Forum

    sin
    A + B
    =
    3
    = sin 60°
    22

    ⇒ 
    A + B
    = 60°
    2

    ⇒  A + B = 2 × 60° = 120°
    ∴  C = 180° – 120° = 60°
    ∴  sin
    C
    = sin 30° =
    1
    22

    Correct Option: C

    sin
    A + B
    =
    3
    = sin 60°
    22

    ⇒ 
    A + B
    = 60°
    2

    ⇒  A + B = 2 × 60° = 120°
    ∴  C = 180° – 120° = 60°
    ∴  sin
    C
    = sin 30° =
    1
    22



  1. Find the value of 8 cos 10° cos20° cos 40°.









  1. View Hint View Answer Discuss in Forum

    Expression = 8 cos 10°. cos 20° . cos 40°

    Expression = 4
    2 sin 10° .cos 10°. cos 20° . cos 40°
    sin 10°

    Expression = 2
    2 sin 20° . cos 20° . cos 40°
    sin 10°

    { ∴ 2 sinθ . cosθ = sin2θ }
    Expression =
    2 sin 40° . cos 40°
    sin 10°

    Expression =
    sin 80°
    =
    sin 80°
    sin 10°cos (90° - 10°)

    Expression =
    sin 80°
    or
    cos 10°
    cos 80°sin 10°

    Expression = tan80° or cot 10°
    { ∴ cos (90° - θ) = sinθ and sin (90° - θ) = cosθ }

    Correct Option: C

    Expression = 8 cos 10°. cos 20° . cos 40°

    Expression = 4
    2 sin 10° .cos 10°. cos 20° . cos 40°
    sin 10°

    Expression = 2
    2 sin 20° . cos 20° . cos 40°
    sin 10°

    { ∴ 2 sinθ . cosθ = sin2θ }
    Expression =
    2 sin 40° . cos 40°
    sin 10°

    Expression =
    sin 80°
    =
    sin 80°
    sin 10°cos (90° - 10°)

    Expression =
    sin 80°
    or
    cos 10°
    cos 80°sin 10°

    Expression = tan80° or cot 10°
    { ∴ cos (90° - θ) = sinθ and sin (90° - θ) = cosθ }


  1. If secθ + tanθ = 2, then the value of sinθ is :









  1. View Hint View Answer Discuss in Forum

    secθ + tanθ = 2
    ∴ sec2θ – tan2θ = 1
    ⇒ (secθ + tanθ)(secθ – tanθ) = 1

    ⇒ secθ – tanθ =
    1
    2

    ∴ secθ + tanθ + secθ – tanθ = 2 +
    1
    2

    ⇒ 2secθ =
    5
    ⇒ secθ =
    5
    24

    Again, (secθ + tanθ) – (secθ – tanθ) = 2 -
    1
    2

    ⇒ 2tanθ =
    3
    ⇒ tanθ =
    3
    24

    ⇒ sinθ =
    tanθ
    =
    3
    ÷
    5
    =
    3
    secθ445

    Correct Option: D

    secθ + tanθ = 2
    ∴ sec2θ – tan2θ = 1
    ⇒ (secθ + tanθ)(secθ – tanθ) = 1

    ⇒ secθ – tanθ =
    1
    2

    ∴ secθ + tanθ + secθ – tanθ = 2 +
    1
    2

    ⇒ 2secθ =
    5
    ⇒ secθ =
    5
    24

    Again, (secθ + tanθ) – (secθ – tanθ) = 2 -
    1
    2

    ⇒ 2tanθ =
    3
    ⇒ tanθ =
    3
    24

    ⇒ sinθ =
    tanθ
    =
    3
    ÷
    5
    =
    3
    secθ445



  1. ∠Y is the right angle of the trianlge XYZ. If XY = 2 √6 cm and XZ – YZ = 2cm, then the value of (secX + tanX) is :









  1. View Hint View Answer Discuss in Forum


    XY = 2 6 cm
    XY – YZ = 2 cm. ...(i)
    ∴ XZ2 = XY2 + YZ2
    ⇒ XZ2 - YZ2 = (2√6)2
    ⇒ XZ2 - YZ2 = 24

    XZ2 - YZ2
    =
    24
    XZ - YZ2

    ⇒ XZ + YZ = 12 ....(ii)
    ⇒ secX + tan X =
    XZ
    +
    YZ
    XYXY

    ⇒ secX + tan X =
    XZ + YZ
    =
    XY

    ⇒ secX + tan X =
    XZ + YZ
    =
    12
    = √6
    XY2√6

    Correct Option: D


    XY = 2 6 cm
    XY – YZ = 2 cm. ...(i)
    ∴ XZ2 = XY2 + YZ2
    ⇒ XZ2 - YZ2 = (2√6)2
    ⇒ XZ2 - YZ2 = 24

    XZ2 - YZ2
    =
    24
    XZ - YZ2

    ⇒ XZ + YZ = 12 ....(ii)
    ⇒ secX + tan X =
    XZ
    +
    YZ
    XYXY

    ⇒ secX + tan X =
    XZ + YZ
    =
    XY

    ⇒ secX + tan X =
    XZ + YZ
    =
    12
    = √6
    XY2√6