Trigonometry
-  If θ is a positive acute angle and tan 2θ tan 3θ = 1, then the value of [2 cos² (5θ / 2) – 1[ is
- 
                        View Hint View Answer Discuss in Forum tan2θ . tan3θ = 1 ⇒ tan 3θ = 1 = cot 2θ tan 2θ 
 ⇒ tan3θ = tan (90° – 2θ )
 ⇒ 3θ = 90° – 2θ ⇒ 5θ = 90°
 ⇒ θ = 18∴ 2cos ² 5θ - 1 = 2 cos² 45° - 1 2 
 Correct Option: Ctan2θ . tan3θ = 1 ⇒ tan 3θ = 1 = cot 2θ tan 2θ 
 ⇒ tan3θ = tan (90° – 2θ )
 ⇒ 3θ = 90° – 2θ ⇒ 5θ = 90°
 ⇒ θ = 18∴ 2cos ² 5θ - 1 = 2 cos² 45° - 1 2 
 
-  If cos²α + cos²β = 2, then the value of tan&3 α+ sin5 β is :
- 
                        View Hint View Answer Discuss in Forum cos²α + cos²β = 2 
 ⇒ 1 – sin²α + 1 – sin²β = 2
 ⇒ sin²α + sin²β = 0
 ⇒ sin²α = 0 & sin²β = 0
 ⇒ sinα = sinβ = 0
 ⇒ α = β = 0
 ∴ tan3α + sin5β = 0Correct Option: Bcos²α + cos²β = 2 
 ⇒ 1 – sin²α + 1 – sin²β = 2
 ⇒ sin²α + sin²β = 0
 ⇒ sin²α = 0 & sin²β = 0
 ⇒ sinα = sinβ = 0
 ⇒ α = β = 0
 ∴ tan3α + sin5β = 0
-  If tan2θ . tan 4θ = 1, then the value of tan 3θis
- 
                        View Hint View Answer Discuss in Forum tan 2θ = 1 = cot 4θ tan 4θ 
 ⇒ tan 2θ = tan (90° – 4θ)
 ⇒ 2θ = 90° – 4θ
 ⇒ 6θ = 90° ⇒ θ = 15°
 ∴ tan 3θ = tan 45° = 1Correct Option: Ctan 2θ = 1 = cot 4θ tan 4θ 
 ⇒ tan 2θ = tan (90° – 4θ)
 ⇒ 2θ = 90° – 4θ
 ⇒ 6θ = 90° ⇒ θ = 15°
 ∴ tan 3θ = tan 45° = 1
-  If sinθ + cosecθ = 2, then the value of sin5θ +cosec5θ when 0° ≤ θ ≤ 90°, is
- 
                        View Hint View Answer Discuss in Forum sinθ + cosecθ = 2 sinθ = 1 = 2 sinθ 
 ⇒ sin² θ - 2sin θ + 1 = 0
 ⇒ (sin θ - 1)² = 0 ⇒ sin θ = 1
 ∴ sin5θ + cosec5θ = 1 + 1 = 2Correct Option: Dsinθ + cosecθ = 2 sinθ = 1 = 2 sinθ 
 ⇒ sin² θ - 2sin θ + 1 = 0
 ⇒ (sin θ - 1)² = 0 ⇒ sin θ = 1
 ∴ sin5θ + cosec5θ = 1 + 1 = 2
-  If A = sin² θ + cos4θ, for any value of θ, then the value of A is
- 
                        View Hint View Answer Discuss in Forum When θ = 0° 
 sin2θ + cos4θ = 1
 When θ = 45°, sin²θ + cos4θ = 1 + 1 = 3 2 4 4 
 when θ = 30°, sin²θ + cos4θ = 1 + 9 4 16 = 4 + 9 = 13 16 16 
 Hence, the value ofA = sin2θ + cos4θ = 13 16 
 Correct Option: BWhen θ = 0° 
 sin2θ + cos4θ = 1
 When θ = 45°, sin²θ + cos4θ = 1 + 1 = 3 2 4 4 
 when θ = 30°, sin²θ + cos4θ = 1 + 9 4 16 = 4 + 9 = 13 16 16 
 Hence, the value ofA = sin2θ + cos4θ = 13 16 
 
 
	