Trigonometry
-  If 7 sin²θ + 3 cos²θ = 4, (0° < θ < 90°), then the value of tan θ is
- 
                        View Hint View Answer Discuss in Forum 7 sin²θ + 3cos²θ = 4 
 On dividing both sides by cos²θ 7 tan²θ + 3 = 4 sec²θ
 ⇒ 7 tan²θ + 3 = 4 (1+ tan²θ)
 ⇒ 7 tan²θ + 3 = 4 + 4 tan²θ
 ⇒ 7 tan²θ – 4 tan²θ = 4 – 3
 ⇒ 3 tan²θ = 1⇒ tan²θ = 1 3 ⇒ tanθ = 1 √3 
 Correct Option: A7 sin²θ + 3cos²θ = 4 
 On dividing both sides by cos²θ 7 tan²θ + 3 = 4 sec²θ
 ⇒ 7 tan²θ + 3 = 4 (1+ tan²θ)
 ⇒ 7 tan²θ + 3 = 4 + 4 tan²θ
 ⇒ 7 tan²θ – 4 tan²θ = 4 – 3
 ⇒ 3 tan²θ = 1⇒ tan²θ = 1 3 ⇒ tanθ = 1 √3 
 
-  If tan 9° = (p / q) , then the value of (sec²81° / 1 + cot²81°) is
- 
                        View Hint View Answer Discuss in Forum ⇒ tan 9° = p q ∴ sec²81° = sec²81° = 90 1 + cot²81° cosec²81° = 1 × sin²81° cos²81° 
 = tan²81° = tan² (90° – 9°)= cot²9° = q² p² 
 Correct Option: D⇒ tan 9° = p q ∴ sec²81° = sec²81° = 90 1 + cot²81° cosec²81° = 1 × sin²81° cos²81° 
 = tan²81° = tan² (90° – 9°)= cot²9° = q² p² 
 
-  If secθ + tanθ = 5, then the value of tan (tanθ + 1 / tanθ - 1) is
- 
                        View Hint View Answer Discuss in Forum secθ + tanθ = 5 
 ∴ sec²θ – tan²θ = 1
 ⇒ (secθ – tanθ) (secθ + tanθ) = 1⇒ secθ – tanθ = 1 5 
 ∴ (secθ + tanθ) – (secθ – tanθ)= 5 - 1 = 25 - 1 5 5 ⇒ 2tanθ = 24 ⇒ tanθ = 12 5 5  = 17 7 
 Correct Option: Dsecθ + tanθ = 5 
 ∴ sec²θ – tan²θ = 1
 ⇒ (secθ – tanθ) (secθ + tanθ) = 1⇒ secθ – tanθ = 1 5 
 ∴ (secθ + tanθ) – (secθ – tanθ)= 5 - 1 = 25 - 1 5 5 ⇒ 2tanθ = 24 ⇒ tanθ = 12 5 5  = 17 7 
 
-  If tan²θ = 1 – e² , then the value of secθ + tan3θ cosecθ is
- 
                        View Hint View Answer Discuss in Forum tan²θ = 1 –e² 
 ∴ secθ + tan3θ . cosecθ
 = secθ + tan²θ . tanθ . cosecθ= secθ + tan²θ . sin θ . 1 cos θ sin θ 
 = secθ + tan²θ . secθ
 = secθ .(1 + tan²θ) 
 Correct Option: Dtan²θ = 1 –e² 
 ∴ secθ + tan3θ . cosecθ
 = secθ + tan²θ . tanθ . cosecθ= secθ + tan²θ . sin θ . 1 cos θ sin θ 
 = secθ + tan²θ . secθ
 = secθ .(1 + tan²θ) 
 
-  Which one of the following is true for 0° < q < 90° ?
- 
                        View Hint View Answer Discuss in Forum When θ = 60° cosθ = 1 , cos²θ = 1 = 90 2 4 
 ∴ cosθ > cos²θ
 Correct Option: BWhen θ = 60° cosθ = 1 , cos²θ = 1 = 90 2 4 
 ∴ cosθ > cos²θ
 
 
	