Trigonometry
-  If tan θ = tan 30° . tan 60° and q is an acute angle, then 2θ is equal to
- 
                        View Hint View Answer Discuss in Forum tanθ = tan30° . tan 60° ⇒ tanθ = 1 × √3 = 1 √3 
 ⇒ tanθ = tan45°
 ⇒ θ = 45°
 ∴ 2θ = 2 × 45° = 90°Correct Option: Ctanθ = tan30° . tan 60° ⇒ tanθ = 1 × √3 = 1 √3 
 ⇒ tanθ = tan45°
 ⇒ θ = 45°
 ∴ 2θ = 2 × 45° = 90°
-  If sec 15θ = cosec 15θ (0° < θ < 10°) then value of θ is
- 
                        View Hint View Answer Discuss in Forum sec15θ = cosec15θ 
 ⇒ sec15θ = sec (90° – 15θ)
 ⇒ 15θ = 90° – 15θ
 ⇒ 15θ = 90° – 15θ
 ⇒ 15θ + 15θ = 90°
 ⇒ 30θ = 90°⇒ θ = 90° 30 
 = 3°Correct Option: Dsec15θ = cosec15θ 
 ⇒ sec15θ = sec (90° – 15θ)
 ⇒ 15θ = 90° – 15θ
 ⇒ 15θ = 90° – 15θ
 ⇒ 15θ + 15θ = 90°
 ⇒ 30θ = 90°⇒ θ = 90° 30 
 = 3°
-  If x = a cos θ cos θ, y = a cosθ sinθ and z = a sinθ, then the value of (x2 + y2 + z2) is
- 
                        View Hint View Answer Discuss in Forum x = a cosθ. cosφ 
 y = a cosθ. sinφ
 z = a sinθ
 ∴ x2 + y2 + z2
 = a2cos2. cos2θ + a2cos2.sin2φ + a2sin2θ
 = a2cos2θ(cos2φ + sin2φ) + a2sin2θ
 = a2cos2θ + a2sin2θ
 = a2(cos2θ + sin2θ) = a2Correct Option: Dx = a cosθ. cosφ 
 y = a cosθ. sinφ
 z = a sinθ
 ∴ x2 + y2 + z2
 = a2cos2. cos2θ + a2cos2.sin2φ + a2sin2θ
 = a2cos2θ(cos2φ + sin2φ) + a2sin2θ
 = a2cos2θ + a2sin2θ
 = a2(cos2θ + sin2θ) = a2
-  If 5 sin2θ + 4cos2θ = 9 and 0 < θ < π then tanθ is equal to 2 2 
- 
                        View Hint View Answer Discuss in Forum 5 sin2θ + 4cos2θ = 9 2 
 ⇒ 10 sin2θ + 8 cos2θ = 9
 On dividing by cos2θ10 sin2θ + 8 cos2θ = 9 = 9 sec2θ cos2θ cos2θ cos2θ 
 ⇒ 10 tan2θ + 8 = 9 (1 + tan2θ)
 ⇒ 10 tan2θ + 8 = 9 + 9 tan2θ
 ⇒ 10 tan2θ – 9 tan2θ = 9 – 8
 ⇒ tan2θ = 1 ⇒ tan θ = ± 1∵ 0 < θ < π , ∴ tanθ = 1 2 Correct Option: A5 sin2θ + 4cos2θ = 9 2 
 ⇒ 10 sin2θ + 8 cos2θ = 9
 On dividing by cos2θ10 sin2θ + 8 cos2θ = 9 = 9 sec2θ cos2θ cos2θ cos2θ 
 ⇒ 10 tan2θ + 8 = 9 (1 + tan2θ)
 ⇒ 10 tan2θ + 8 = 9 + 9 tan2θ
 ⇒ 10 tan2θ – 9 tan2θ = 9 – 8
 ⇒ tan2θ = 1 ⇒ tan θ = ± 1∵ 0 < θ < π , ∴ tanθ = 1 2 
-  Which one of the following is true for 0°<θ<90°
- 
                        View Hint View Answer Discuss in Forum For 0° < q < 90° 
 cosθ > cos2θ because cosθ° = 1
 and cos 90° = 0Correct Option: AFor 0° < q < 90° 
 cosθ > cos2θ because cosθ° = 1
 and cos 90° = 0
 
	