Trigonometry


  1. If tan θ = tan 30° . tan 60° and q is an acute angle, then 2θ is equal to









  1. View Hint View Answer Discuss in Forum

    tanθ = tan30° . tan 60°

    ⇒  tanθ =
    1
    × √3 = 1
    3

    ⇒  tanθ = tan45°
    ⇒  θ = 45°
    ∴  2θ = 2 × 45° = 90°

    Correct Option: C

    tanθ = tan30° . tan 60°

    ⇒  tanθ =
    1
    × √3 = 1
    3

    ⇒  tanθ = tan45°
    ⇒  θ = 45°
    ∴  2θ = 2 × 45° = 90°


  1. If sec 15θ = cosec 15θ (0° < θ < 10°) then value of θ is









  1. View Hint View Answer Discuss in Forum

    sec15θ = cosec15θ
    ⇒  sec15θ = sec (90° – 15θ)
    ⇒  15θ = 90° – 15θ
    ⇒  15θ = 90° – 15θ
    ⇒  15θ + 15θ = 90°
    ⇒  30θ = 90°

    ⇒  θ =
    90°
    30

    = 3°

    Correct Option: D

    sec15θ = cosec15θ
    ⇒  sec15θ = sec (90° – 15θ)
    ⇒  15θ = 90° – 15θ
    ⇒  15θ = 90° – 15θ
    ⇒  15θ + 15θ = 90°
    ⇒  30θ = 90°

    ⇒  θ =
    90°
    30

    = 3°



  1. If x = a cos θ cos θ, y = a cosθ sinθ and z = a sinθ, then the value of (x2 + y2 + z2) is









  1. View Hint View Answer Discuss in Forum

    x = a cosθ. cosφ
    y = a cosθ. sinφ
    z = a sinθ
    ∴  x2 + y2 + z2
    = a2cos2. cos2θ + a2cos2.sin2φ + a2sin2θ
    = a2cos2θ(cos2φ + sin2φ) + a2sin2θ
    = a2cos2θ + a2sin2θ
    = a2(cos2θ + sin2θ) = a2

    Correct Option: D

    x = a cosθ. cosφ
    y = a cosθ. sinφ
    z = a sinθ
    ∴  x2 + y2 + z2
    = a2cos2. cos2θ + a2cos2.sin2φ + a2sin2θ
    = a2cos2θ(cos2φ + sin2φ) + a2sin2θ
    = a2cos2θ + a2sin2θ
    = a2(cos2θ + sin2θ) = a2


  1. If   5 sin2θ + 4cos2θ =
    9
    and 0 < θ <
    π
    then tanθ is equal to
    22









  1. View Hint View Answer Discuss in Forum

    5 sin2θ + 4cos2θ =
    9
    2

    ⇒  10 sin2θ + 8 cos2θ = 9
    On dividing by cos2θ
    10 sin2θ
    +
    8 cos2θ
    =
    9
    = 9 sec2θ
    cos2θcos2θcos2θ

    ⇒  10 tan2θ + 8 = 9 (1 + tan2θ)
    ⇒  10 tan2θ + 8 = 9 + 9 tan2θ
    ⇒  10 tan2θ – 9 tan2θ = 9 – 8
    ⇒  tan2θ = 1 ⇒ tan θ = ± 1
    ∵  0 < θ <
    π
    ,   ∴  tanθ = 1
    2

    Correct Option: A

    5 sin2θ + 4cos2θ =
    9
    2

    ⇒  10 sin2θ + 8 cos2θ = 9
    On dividing by cos2θ
    10 sin2θ
    +
    8 cos2θ
    =
    9
    = 9 sec2θ
    cos2θcos2θcos2θ

    ⇒  10 tan2θ + 8 = 9 (1 + tan2θ)
    ⇒  10 tan2θ + 8 = 9 + 9 tan2θ
    ⇒  10 tan2θ – 9 tan2θ = 9 – 8
    ⇒  tan2θ = 1 ⇒ tan θ = ± 1
    ∵  0 < θ <
    π
    ,   ∴  tanθ = 1
    2



  1. Which one of the following is true for 0°<θ<90°









  1. View Hint View Answer Discuss in Forum

    For 0° < q < 90°
    cosθ > cos2θ because cosθ° = 1
    and cos 90° = 0

    Correct Option: A

    For 0° < q < 90°
    cosθ > cos2θ because cosθ° = 1
    and cos 90° = 0