Trigonometry
- If tan θ = tan 30° . tan 60° and q is an acute angle, then 2θ is equal to
-
View Hint View Answer Discuss in Forum
tanθ = tan30° . tan 60°
⇒ tanθ = 1 × √3 = 1 √3
⇒ tanθ = tan45°
⇒ θ = 45°
∴ 2θ = 2 × 45° = 90°Correct Option: C
tanθ = tan30° . tan 60°
⇒ tanθ = 1 × √3 = 1 √3
⇒ tanθ = tan45°
⇒ θ = 45°
∴ 2θ = 2 × 45° = 90°
- If sec 15θ = cosec 15θ (0° < θ < 10°) then value of θ is
-
View Hint View Answer Discuss in Forum
sec15θ = cosec15θ
⇒ sec15θ = sec (90° – 15θ)
⇒ 15θ = 90° – 15θ
⇒ 15θ = 90° – 15θ
⇒ 15θ + 15θ = 90°
⇒ 30θ = 90°⇒ θ = 90° 30
= 3°Correct Option: D
sec15θ = cosec15θ
⇒ sec15θ = sec (90° – 15θ)
⇒ 15θ = 90° – 15θ
⇒ 15θ = 90° – 15θ
⇒ 15θ + 15θ = 90°
⇒ 30θ = 90°⇒ θ = 90° 30
= 3°
- If x = a cos θ cos θ, y = a cosθ sinθ and z = a sinθ, then the value of (x2 + y2 + z2) is
-
View Hint View Answer Discuss in Forum
x = a cosθ. cosφ
y = a cosθ. sinφ
z = a sinθ
∴ x2 + y2 + z2
= a2cos2. cos2θ + a2cos2.sin2φ + a2sin2θ
= a2cos2θ(cos2φ + sin2φ) + a2sin2θ
= a2cos2θ + a2sin2θ
= a2(cos2θ + sin2θ) = a2Correct Option: D
x = a cosθ. cosφ
y = a cosθ. sinφ
z = a sinθ
∴ x2 + y2 + z2
= a2cos2. cos2θ + a2cos2.sin2φ + a2sin2θ
= a2cos2θ(cos2φ + sin2φ) + a2sin2θ
= a2cos2θ + a2sin2θ
= a2(cos2θ + sin2θ) = a2
-
If 5 sin2θ + 4cos2θ = 9 and 0 < θ < π then tanθ is equal to 2 2
-
View Hint View Answer Discuss in Forum
5 sin2θ + 4cos2θ = 9 2
⇒ 10 sin2θ + 8 cos2θ = 9
On dividing by cos2θ10 sin2θ + 8 cos2θ = 9 = 9 sec2θ cos2θ cos2θ cos2θ
⇒ 10 tan2θ + 8 = 9 (1 + tan2θ)
⇒ 10 tan2θ + 8 = 9 + 9 tan2θ
⇒ 10 tan2θ – 9 tan2θ = 9 – 8
⇒ tan2θ = 1 ⇒ tan θ = ± 1∵ 0 < θ < π , ∴ tanθ = 1 2 Correct Option: A
5 sin2θ + 4cos2θ = 9 2
⇒ 10 sin2θ + 8 cos2θ = 9
On dividing by cos2θ10 sin2θ + 8 cos2θ = 9 = 9 sec2θ cos2θ cos2θ cos2θ
⇒ 10 tan2θ + 8 = 9 (1 + tan2θ)
⇒ 10 tan2θ + 8 = 9 + 9 tan2θ
⇒ 10 tan2θ – 9 tan2θ = 9 – 8
⇒ tan2θ = 1 ⇒ tan θ = ± 1∵ 0 < θ < π , ∴ tanθ = 1 2
- Which one of the following is true for 0°<θ<90°
-
View Hint View Answer Discuss in Forum
For 0° < q < 90°
cosθ > cos2θ because cosθ° = 1
and cos 90° = 0Correct Option: A
For 0° < q < 90°
cosθ > cos2θ because cosθ° = 1
and cos 90° = 0