Trigonometry


  1. If tan θ + cot θ = 5, then tan²θ + cot²θ is









  1. View Hint View Answer Discuss in Forum

    tanθ + cotθ = 5
    On squaring both sides, (tanθ + cotθ)² = 52
    ⇒ tan² θ + cot² θ + 2 tanθ.cotθ = 25
    ⇒ tan² θ + cot² θ = 25 – 2 = 23 [∵ tanθ.cotθ = 1]

    Correct Option: A

    tanθ + cotθ = 5
    On squaring both sides, (tanθ + cotθ)² = 52
    ⇒ tan² θ + cot² θ + 2 tanθ.cotθ = 25
    ⇒ tan² θ + cot² θ = 25 – 2 = 23 [∵ tanθ.cotθ = 1]


  1. The value of sin²22° + sin²68° + cot²30° is









  1. View Hint View Answer Discuss in Forum

    sin²22° + sin²68° + cot²30°
    = sin²22° + sin² (90° – 22°) + (√3
    = sin²22° + cos²22° + 3 [∵ sin²θ + cos²θ = 1]
    = 1 + 3 = 4

    Correct Option: A

    sin²22° + sin²68° + cot²30°
    = sin²22° + sin² (90° – 22°) + (√3
    = sin²22° + cos²22° + 3 [∵ sin²θ + cos²θ = 1]
    = 1 + 3 = 4



  1. The minimum value of 2sin²θ + 3cos²θ is









  1. View Hint View Answer Discuss in Forum

    2 sin²θ + 3 cos²θ
    = 2 sin²θ + 2cos²θ + cos²θ
    = 2 (sin²θ + cos²θ) + cos²θ
    = 2 + cos²θ
    ∴ Minimum value = 2 + 0 = 2 because cos²θ ≥ 0

    Correct Option: C

    2 sin²θ + 3 cos²θ
    = 2 sin²θ + 2cos²θ + cos²θ
    = 2 (sin²θ + cos²θ) + cos²θ
    = 2 + cos²θ
    ∴ Minimum value = 2 + 0 = 2 because cos²θ ≥ 0


  1. If A, B, and C be the angles of a triangle, then out of the following, the incorrect relation is :









  1. View Hint View Answer Discuss in Forum

    In a triangle ABC,
    A + B + C = 180°

    A
    +
    B
    +
    C
    = 90°
    222

    A + B
    = 90° -
    C
    22

    ⇒ tanA + B
    2

    = tan90° -C = cotC
    22

    Correct Option: B

    In a triangle ABC,
    A + B + C = 180°

    A
    +
    B
    +
    C
    = 90°
    222

    A + B
    = 90° -
    C
    22

    ⇒ tanA + B
    2

    = tan90° -C = cotC
    22



  1. If 5 sinθ = 3, the numerical value of
    secθ - tanθ
    is
    secθ + tanθ









  1. View Hint View Answer Discuss in Forum

    5 sinθ = 3 ⇒ sinθ =
    3
    5

    Expression =
    sec θ - tan θ
    sec θ + tan θ


    =
    2
    =
    1
    84

    Correct Option: D

    5 sinθ = 3 ⇒ sinθ =
    3
    5

    Expression =
    sec θ - tan θ
    sec θ + tan θ


    =
    2
    =
    1
    84