Trigonometry
-  2sinθ simplifies to: cosθ(1 + tan2θ) 
- 
                        View Hint View Answer Discuss in Forum Expression = 2sinθ cosθ(1 + tan2θ) Expression = 2sinθ cosθ.sec2θ Expression = 2sinθ secθ 
 [∴ cosθ . secθ = 1]
 Expression = 2 sinθ. cosθ = sin2θ
 Correct Option: CExpression = 2sinθ cosθ(1 + tan2θ) Expression = 2sinθ cosθ.sec2θ Expression = 2sinθ secθ 
 [∴ cosθ . secθ = 1]
 Expression = 2 sinθ. cosθ = sin2θ
 
-  If sinθ = 5 and θ is acute, what is the value of √(cotθ + tanθ) ? 13 
- 
                        View Hint View Answer Discuss in Forum sinθ = 5 13 
 cosθ = √1 - sin²θ
 cosθ = √{ 1 - (5 / 13)2
 cosθ = √{ 1 - (25 / 169)cosθ = √ (169 - 25) 169 cosθ = √ (144) 169 cosθ = 12 13 ∴ tanθ = sinθ = 5 cosθ 12 cotθ = 12 5 
 ∴ √(cotθ + tanθ) = √(5 / 12) + (12 / 5)Required answer = √ (25 + 144) 60 = √ 169 60 Required answer = 13 2 √15 
 Correct Option: Bsinθ = 5 13 
 cosθ = √1 - sin²θ
 cosθ = √{ 1 - (5 / 13)2
 cosθ = √{ 1 - (25 / 169)cosθ = √ (169 - 25) 169 cosθ = √ (144) 169 cosθ = 12 13 ∴ tanθ = sinθ = 5 cosθ 12 cotθ = 12 5 
 ∴ √(cotθ + tanθ) = √(5 / 12) + (12 / 5)Required answer = √ (25 + 144) 60 = √ 169 60 Required answer = 13 2 √15 
 
-  If r sinθ = 1, r cosθ = √3 then the value of (r2 tanθ) is
- 
                        View Hint View Answer Discuss in Forum r sinθ = 1 ..... (i) 
 r cosθ = √3 ..... (i)
 On squaring and adding both equations,
 r2 sin2θ + r2cos2θ = 1 + 3
 ⇒ r2 (sin2θ + cos2θ) = 4
 ⇒ r2 = 4Again, = r sinθ = 1 r cosθ √3 ⇒ tanθ = 1 √3 ∴ r2 tanθ = 4 √3 Correct Option: Cr sinθ = 1 ..... (i) 
 r cosθ = √3 ..... (i)
 On squaring and adding both equations,
 r2 sin2θ + r2cos2θ = 1 + 3
 ⇒ r2 (sin2θ + cos2θ) = 4
 ⇒ r2 = 4Again, = r sinθ = 1 r cosθ √3 ⇒ tanθ = 1 √3 ∴ r2 tanθ = 4 √3 
-  The value of cos2 20° + cos2 70° is :
- 
                        View Hint View Answer Discuss in Forum cos220° + cos270° 
 = cos2(90° – 70°) + cos270°
 = sin270° + cos270°
 = 1 [cos (90° – θ) = sinq]Correct Option: Dcos220° + cos270° 
 = cos2(90° – 70°) + cos270°
 = sin270° + cos270°
 = 1 [cos (90° – θ) = sinq]
-  If cotθ = 4, then the value of 5sinθ + 3cosθ is 5sinθ − 3cosθ 
- 
                        View Hint View Answer Discuss in Forum cotθ = 4 (Given) Expression = 5sinθ + 3cosθ 5sinθ - 3cosθ = 5 sinθ + 3cosθ sinθ sinθ 5 sinθ - 3cosθ sinθ sinθ 
 [On dividing numerator and denominator by sinq]= 5 + 3cotθ 5 - 3cotθ = 5 + 3 × 4 = 5 + 12 = - 17 5 - 3 × 4 5 - 12 7 Correct Option: Ecotθ = 4 (Given) Expression = 5sinθ + 3cosθ 5sinθ - 3cosθ = 5 sinθ + 3cosθ sinθ sinθ 5 sinθ - 3cosθ sinθ sinθ 
 [On dividing numerator and denominator by sinq]= 5 + 3cotθ 5 - 3cotθ = 5 + 3 × 4 = 5 + 12 = - 17 5 - 3 × 4 5 - 12 7 
 
	