Trigonometry


  1. 2sinθ
    simplifies to:
    cosθ(1 + tan2θ)










  1. View Hint View Answer Discuss in Forum

    Expression =
    2sinθ
    cosθ(1 + tan2θ)

    Expression =
    2sinθ
    cosθ.sec2θ

    Expression =
    2sinθ
    secθ

    [∴ cosθ . secθ = 1]
    Expression = 2 sinθ. cosθ = sin2θ

    Correct Option: C

    Expression =
    2sinθ
    cosθ(1 + tan2θ)

    Expression =
    2sinθ
    cosθ.sec2θ

    Expression =
    2sinθ
    secθ

    [∴ cosθ . secθ = 1]
    Expression = 2 sinθ. cosθ = sin2θ


  1. If sinθ =
    5
    and θ is acute, what is the value of √(cotθ + tanθ) ?
    13









  1. View Hint View Answer Discuss in Forum

    sinθ =
    5
    13

    cosθ = √1 - sin²θ
    cosθ = √{ 1 - (5 / 13)2
    cosθ = √{ 1 - (25 / 169)
    cosθ = √
    (169 - 25)
    169

    cosθ = √
    (144)
    169

    cosθ =
    12
    13

    ∴ tanθ =
    sinθ
    =
    5
    cosθ12

    cotθ =
    12
    5

    ∴ √(cotθ + tanθ) = √(5 / 12) + (12 / 5)
    Required answer = √
    (25 + 144)
    60

    = √
    169
    60

    Required answer =
    13
    2 √15

    Correct Option: B

    sinθ =
    5
    13

    cosθ = √1 - sin²θ
    cosθ = √{ 1 - (5 / 13)2
    cosθ = √{ 1 - (25 / 169)
    cosθ = √
    (169 - 25)
    169

    cosθ = √
    (144)
    169

    cosθ =
    12
    13

    ∴ tanθ =
    sinθ
    =
    5
    cosθ12

    cotθ =
    12
    5

    ∴ √(cotθ + tanθ) = √(5 / 12) + (12 / 5)
    Required answer = √
    (25 + 144)
    60

    = √
    169
    60

    Required answer =
    13
    2 √15



  1. If r sinθ = 1, r cosθ = √3 then the value of (r2 tanθ) is









  1. View Hint View Answer Discuss in Forum

    r sinθ = 1        ..... (i)
    r cosθ = √3         ..... (i)
    On squaring and adding both equations,
    r2 sin2θ + r2cos2θ = 1 + 3
    ⇒  r2 (sin2θ + cos2θ) = 4
    ⇒  r2 = 4

    Again, =
    r sinθ
    =
    1
    r cosθ3

    ⇒  tanθ =
    1
    3

    ∴  r2 tanθ =
    4
    3

    Correct Option: C

    r sinθ = 1        ..... (i)
    r cosθ = √3         ..... (i)
    On squaring and adding both equations,
    r2 sin2θ + r2cos2θ = 1 + 3
    ⇒  r2 (sin2θ + cos2θ) = 4
    ⇒  r2 = 4

    Again, =
    r sinθ
    =
    1
    r cosθ3

    ⇒  tanθ =
    1
    3

    ∴  r2 tanθ =
    4
    3


  1. The value of cos2 20° + cos2 70° is :









  1. View Hint View Answer Discuss in Forum

    cos220° + cos270°
    = cos2(90° – 70°) + cos270°
    = sin270° + cos270°
    = 1 [cos (90° – θ) = sinq]

    Correct Option: D

    cos220° + cos270°
    = cos2(90° – 70°) + cos270°
    = sin270° + cos270°
    = 1 [cos (90° – θ) = sinq]



  1. If cotθ = 4, then the value of
    5sinθ + 3cosθ
    is
    5sinθ − 3cosθ











  1. View Hint View Answer Discuss in Forum

    cotθ = 4 (Given)

    Expression =
    5sinθ + 3cosθ
    5sinθ - 3cosθ

    =  5
    sinθ
    +
    3cosθ
    sinθsinθ
    5
    sinθ
    -
    3cosθ
    sinθsinθ

    [On dividing numerator and denominator by sinq]
    =
    5 + 3cotθ
    5 - 3cotθ

    =
    5 + 3 × 4
    =
    5 + 12
    =
    - 17
    5 - 3 × 45 - 127

    Correct Option: E

    cotθ = 4 (Given)

    Expression =
    5sinθ + 3cosθ
    5sinθ - 3cosθ

    =  5
    sinθ
    +
    3cosθ
    sinθsinθ
    5
    sinθ
    -
    3cosθ
    sinθsinθ

    [On dividing numerator and denominator by sinq]
    =
    5 + 3cotθ
    5 - 3cotθ

    =
    5 + 3 × 4
    =
    5 + 12
    =
    - 17
    5 - 3 × 45 - 127