Trigonometry
-
The numerical value of cos² 45° + cos² 60° - tan² 30° - sin² 30° is sin² 60° sin² 45° cot² 45° cot² 30°
-
View Hint View Answer Discuss in Forum
cos² 45° + cos²60° - tan²30° - sin²30° sin²60° sin²45° cot²45° cot²30° = 1 × 4 + 1 × 2 - 1 × 1 - 1 2 3 4 3 4 × 3 = 2 + 1 - 1 - 1 3 2 3 12 = 8 + 6 - 4 - 1 = 9 = 3 12 12 4
Correct Option: B
cos² 45° + cos²60° - tan²30° - sin²30° sin²60° sin²45° cot²45° cot²30° = 1 × 4 + 1 × 2 - 1 × 1 - 1 2 3 4 3 4 × 3 = 2 + 1 - 1 - 1 3 2 3 12 = 8 + 6 - 4 - 1 = 9 = 3 12 12 4
- The value of tan1°tan2°tan3° ........tan89° is
-
View Hint View Answer Discuss in Forum
tan (90° – θ) = cotθ tanθ.cotθ = 1
tan 89° = tan (90° – 1°) = cot 1°.
tan 88° = tan (90° – 2°) = cot 2°.
∴ Expression = (tan 1°.tan 89°) (tan 2°.tan 88°) ---- tan 45°
= (tan 1°.cot 1°). (tan 2°.cot 2°) ---- tan 45°
= 1.1 ----1 = 1Correct Option: A
tan (90° – θ) = cotθ tanθ.cotθ = 1
tan 89° = tan (90° – 1°) = cot 1°.
tan 88° = tan (90° – 2°) = cot 2°.
∴ Expression = (tan 1°.tan 89°) (tan 2°.tan 88°) ---- tan 45°
= (tan 1°.cot 1°). (tan 2°.cot 2°) ---- tan 45°
= 1.1 ----1 = 1
-
If cos α = n and cos α = m , then the vlaue of cos² β is sin β cos β
-
View Hint View Answer Discuss in Forum
cos α = n and cos α = m sin β sin β
⇒ cosα = n sinβ and cosα = m cosβ.
∴ n² sin² β = m² cos² β
⇒ n² (1 – cos² β) = m² cos² β
⇒ n² – n² cos² β = m² cos² β ⇒ m² cos² β + n² cos² β = n²
⇒ cos² β (m² + n² ) = n²⇒ cos²β = n² m² + n²
Correct Option: C
cos α = n and cos α = m sin β sin β
⇒ cosα = n sinβ and cosα = m cosβ.
∴ n² sin² β = m² cos² β
⇒ n² (1 – cos² β) = m² cos² β
⇒ n² – n² cos² β = m² cos² β ⇒ m² cos² β + n² cos² β = n²
⇒ cos² β (m² + n² ) = n²⇒ cos²β = n² m² + n²
- If 0° ≤ A ≤ 90°, the simplified form of the given expression sin A cos A (tan A – cot A) is
-
View Hint View Answer Discuss in Forum
sin A. cos A (tan A – cot A)
= sin A. cos A sin A - cos A cos A sin A = sin A. cos A sin² A - cos² A sin A . cos A
= sin²A – cos²A
= sin²A – (1 – sin²A)
= sin²A – 1 + sin²A
= 2 sin²A – 1Correct Option: C
sin A. cos A (tan A – cot A)
= sin A. cos A sin A - cos A cos A sin A = sin A. cos A sin² A - cos² A sin A . cos A
= sin²A – cos²A
= sin²A – (1 – sin²A)
= sin²A – 1 + sin²A
= 2 sin²A – 1
- If θ is an acute angle and tan²θ + (1 / tan² θ) = 2, then the value of θ is :
-
View Hint View Answer Discuss in Forum
tan² θ + 1 = 2 tan² θ ⇒ tan4 θ + 1 = 2 tan² θ
⇒ tan4 θ + 1 = 2 tan2 θ
⇒ tan4 θ – 2 tan2 θ + 1 = 0
⇒ (tan2 θ – 1)2 = 0
⇒ tan² θ – 1 = 0
⇒ tan² θ = 1
⇒ tanθ = 1 = tan 45°
⇒ ² θ = 45°
∵ θ is an acute angleCorrect Option: B
tan² θ + 1 = 2 tan² θ ⇒ tan4 θ + 1 = 2 tan² θ
⇒ tan4 θ + 1 = 2 tan2 θ
⇒ tan4 θ – 2 tan2 θ + 1 = 0
⇒ (tan2 θ – 1)2 = 0
⇒ tan² θ – 1 = 0
⇒ tan² θ = 1
⇒ tanθ = 1 = tan 45°
⇒ ² θ = 45°
∵ θ is an acute angle