Trigonometry


  1. The numerical value of
    cos² 45°
    +
    cos² 60°
    -
    tan² 30°
    -
    sin² 30°
    is
    sin² 60°sin² 45°cot² 45°cot² 30°









  1. View Hint View Answer Discuss in Forum

    cos² 45°
    +
    cos²60°
    -
    tan²30°
    -
    sin²30°

    sin²60°sin²45°cot²45°cot²30°


    =
    1
    ×
    4
    +
    1
    × 2 -
    1
    × 1 -
    1

    23434 × 3

    =
    2
    +
    1
    -
    1
    -
    1

    32312

    =
    8 + 6 - 4 - 1
    =
    9
    =
    3

    12124

    Correct Option: B

    cos² 45°
    +
    cos²60°
    -
    tan²30°
    -
    sin²30°

    sin²60°sin²45°cot²45°cot²30°


    =
    1
    ×
    4
    +
    1
    × 2 -
    1
    × 1 -
    1

    23434 × 3

    =
    2
    +
    1
    -
    1
    -
    1

    32312

    =
    8 + 6 - 4 - 1
    =
    9
    =
    3

    12124


  1. The value of tan1°tan2°tan3° ........tan89° is









  1. View Hint View Answer Discuss in Forum

    tan (90° – θ) = cotθ tanθ.cotθ = 1
    tan 89° = tan (90° – 1°) = cot 1°.
    tan 88° = tan (90° – 2°) = cot 2°.
    ∴ Expression = (tan 1°.tan 89°) (tan 2°.tan 88°) ---- tan 45°
    = (tan 1°.cot 1°). (tan 2°.cot 2°) ---- tan 45°
    = 1.1 ----1 = 1

    Correct Option: A

    tan (90° – θ) = cotθ tanθ.cotθ = 1
    tan 89° = tan (90° – 1°) = cot 1°.
    tan 88° = tan (90° – 2°) = cot 2°.
    ∴ Expression = (tan 1°.tan 89°) (tan 2°.tan 88°) ---- tan 45°
    = (tan 1°.cot 1°). (tan 2°.cot 2°) ---- tan 45°
    = 1.1 ----1 = 1



  1. If
    cos α
    = n and
    cos α
    = m , then the vlaue of cos² β is
    sin βcos β









  1. View Hint View Answer Discuss in Forum

    cos α
    = n and
    cos α
    = m
    sin βsin β

    ⇒ cosα = n sinβ and cosα = m cosβ.
    ∴ n² sin² β = m² cos² β
    ⇒ n² (1 – cos² β) = m² cos² β
    ⇒ n² – n² cos² β = m² cos² β ⇒ m² cos² β + n² cos² β = n²
    ⇒ cos² β (m² + n² ) = n²
    ⇒ cos²β =
    m² + n²

    Correct Option: C

    cos α
    = n and
    cos α
    = m
    sin βsin β

    ⇒ cosα = n sinβ and cosα = m cosβ.
    ∴ n² sin² β = m² cos² β
    ⇒ n² (1 – cos² β) = m² cos² β
    ⇒ n² – n² cos² β = m² cos² β ⇒ m² cos² β + n² cos² β = n²
    ⇒ cos² β (m² + n² ) = n²
    ⇒ cos²β =
    m² + n²


  1. If 0° ≤ A ≤ 90°, the simplified form of the given expression sin A cos A (tan A – cot A) is









  1. View Hint View Answer Discuss in Forum

    sin A. cos A (tan A – cot A)

    = sin A. cos Asin A-cos A
    cos Asin A

    = sin A. cos A
    sin² A - cos² A
    sin A . cos A

    = sin²A – cos²A
    = sin²A – (1 – sin²A)
    = sin²A – 1 + sin²A
    = 2 sin²A – 1

    Correct Option: C

    sin A. cos A (tan A – cot A)

    = sin A. cos Asin A-cos A
    cos Asin A

    = sin A. cos A
    sin² A - cos² A
    sin A . cos A

    = sin²A – cos²A
    = sin²A – (1 – sin²A)
    = sin²A – 1 + sin²A
    = 2 sin²A – 1



  1. If θ is an acute angle and tan²θ + (1 / tan² θ) = 2, then the value of θ is :









  1. View Hint View Answer Discuss in Forum

    tan² θ +
    1
    = 2
    tan² θ

    tan4 θ + 1
    = 2
    tan² θ

    ⇒ tan4 θ + 1 = 2 tan2 θ
    ⇒ tan4 θ – 2 tan2 θ + 1 = 0
    ⇒ (tan2 θ – 1)2 = 0
    ⇒ tan² θ – 1 = 0
    ⇒ tan² θ = 1
    ⇒ tanθ = 1 = tan 45°
    ⇒ ² θ = 45°
    ∵ θ is an acute angle

    Correct Option: B

    tan² θ +
    1
    = 2
    tan² θ

    tan4 θ + 1
    = 2
    tan² θ

    ⇒ tan4 θ + 1 = 2 tan2 θ
    ⇒ tan4 θ – 2 tan2 θ + 1 = 0
    ⇒ (tan2 θ – 1)2 = 0
    ⇒ tan² θ – 1 = 0
    ⇒ tan² θ = 1
    ⇒ tanθ = 1 = tan 45°
    ⇒ ² θ = 45°
    ∵ θ is an acute angle