Trigonometry
-  The numerical value of cos² 45° + cos² 60° - tan² 30° - sin² 30° is sin² 60° sin² 45° cot² 45° cot² 30° 
- 
                        View Hint View Answer Discuss in Forum cos² 45° + cos²60° - tan²30° - sin²30° sin²60° sin²45° cot²45° cot²30°  = 1 × 4 + 1 × 2 - 1 × 1 - 1 2 3 4 3 4 × 3 = 2 + 1 - 1 - 1 3 2 3 12 = 8 + 6 - 4 - 1 = 9 = 3 12 12 4 
 Correct Option: Bcos² 45° + cos²60° - tan²30° - sin²30° sin²60° sin²45° cot²45° cot²30°  = 1 × 4 + 1 × 2 - 1 × 1 - 1 2 3 4 3 4 × 3 = 2 + 1 - 1 - 1 3 2 3 12 = 8 + 6 - 4 - 1 = 9 = 3 12 12 4 
 
-  The value of tan1°tan2°tan3° ........tan89° is
- 
                        View Hint View Answer Discuss in Forum tan (90° – θ) = cotθ tanθ.cotθ = 1 
 tan 89° = tan (90° – 1°) = cot 1°.
 tan 88° = tan (90° – 2°) = cot 2°.
 ∴ Expression = (tan 1°.tan 89°) (tan 2°.tan 88°) ---- tan 45°
 = (tan 1°.cot 1°). (tan 2°.cot 2°) ---- tan 45°
 = 1.1 ----1 = 1Correct Option: Atan (90° – θ) = cotθ tanθ.cotθ = 1 
 tan 89° = tan (90° – 1°) = cot 1°.
 tan 88° = tan (90° – 2°) = cot 2°.
 ∴ Expression = (tan 1°.tan 89°) (tan 2°.tan 88°) ---- tan 45°
 = (tan 1°.cot 1°). (tan 2°.cot 2°) ---- tan 45°
 = 1.1 ----1 = 1
-  If cos α = n and cos α = m , then the vlaue of cos² β is sin β cos β 
- 
                        View Hint View Answer Discuss in Forum cos α = n and cos α = m sin β sin β 
 ⇒ cosα = n sinβ and cosα = m cosβ.
 ∴ n² sin² β = m² cos² β
 ⇒ n² (1 – cos² β) = m² cos² β
 ⇒ n² – n² cos² β = m² cos² β ⇒ m² cos² β + n² cos² β = n²
 ⇒ cos² β (m² + n² ) = n²⇒ cos²β = n² m² + n² 
 Correct Option: Ccos α = n and cos α = m sin β sin β 
 ⇒ cosα = n sinβ and cosα = m cosβ.
 ∴ n² sin² β = m² cos² β
 ⇒ n² (1 – cos² β) = m² cos² β
 ⇒ n² – n² cos² β = m² cos² β ⇒ m² cos² β + n² cos² β = n²
 ⇒ cos² β (m² + n² ) = n²⇒ cos²β = n² m² + n² 
 
-  If 0° ≤ A ≤ 90°, the simplified form of the given expression sin A cos A (tan A – cot A) is
- 
                        View Hint View Answer Discuss in Forum sin A. cos A (tan A – cot A) = sin A. cos A  sin A - cos A  cos A sin A = sin A. cos A  sin² A - cos² A  sin A . cos A 
 = sin²A – cos²A
 = sin²A – (1 – sin²A)
 = sin²A – 1 + sin²A
 = 2 sin²A – 1Correct Option: Csin A. cos A (tan A – cot A) = sin A. cos A  sin A - cos A  cos A sin A = sin A. cos A  sin² A - cos² A  sin A . cos A 
 = sin²A – cos²A
 = sin²A – (1 – sin²A)
 = sin²A – 1 + sin²A
 = 2 sin²A – 1
-  If θ is an acute angle and tan²θ + (1 / tan² θ) = 2, then the value of θ is :
- 
                        View Hint View Answer Discuss in Forum tan² θ + 1 = 2 tan² θ ⇒ tan4 θ + 1 = 2 tan² θ 
 ⇒ tan4 θ + 1 = 2 tan2 θ
 ⇒ tan4 θ – 2 tan2 θ + 1 = 0
 ⇒ (tan2 θ – 1)2 = 0
 ⇒ tan² θ – 1 = 0
 ⇒ tan² θ = 1
 ⇒ tanθ = 1 = tan 45°
 ⇒ ² θ = 45°
 ∵ θ is an acute angleCorrect Option: Btan² θ + 1 = 2 tan² θ ⇒ tan4 θ + 1 = 2 tan² θ 
 ⇒ tan4 θ + 1 = 2 tan2 θ
 ⇒ tan4 θ – 2 tan2 θ + 1 = 0
 ⇒ (tan2 θ – 1)2 = 0
 ⇒ tan² θ – 1 = 0
 ⇒ tan² θ = 1
 ⇒ tanθ = 1 = tan 45°
 ⇒ ² θ = 45°
 ∵ θ is an acute angle
 
	