Trigonometry


  1. If
    x - tan²30°
    = sin²30° + 4 cot² 45° – sec² 60°, then the value of x is :
    1 + tan²30°









  1. View Hint View Answer Discuss in Forum

    x - x tan² 30°
    1 + tan² 30°

    = sin²30° + 4 cot²45° – sec²60°

    =1² + 4 × (1)² - (2)²
    2


    3x - x
    =
    1
    3 + 14

    ⇒ 2x =
    1
    × 4 = 1
    4

    ⇒ x =
    1
    2

    Correct Option: C

    x - x tan² 30°
    1 + tan² 30°

    = sin²30° + 4 cot²45° – sec²60°

    =1² + 4 × (1)² - (2)²
    2


    3x - x
    =
    1
    3 + 14

    ⇒ 2x =
    1
    × 4 = 1
    4

    ⇒ x =
    1
    2


  1. If cos θ + sin θ = m and sec θ + cosec θ = n then the value of n (m² – 1) is equal to :









  1. View Hint View Answer Discuss in Forum

    cosθ + sinθ = m --- (i)
    secθ + cosecθ = n

    1
    +
    1
    = n
    cosθsinθ

    sinθ + cosθ
    = n --- (ii)
    sinθ . cosθ

    ∴ n (m² – 1) =
    sinθ + cosθ
    sinθ . cosθ

    [(sinθ + cosθ)² – 1]
    =
    sinθ + cosθ
    (sin²θ + cos²θ + 2sinθ cosθ – 1)
    sinθ . cosθ

    =
    sinθ + cosθ
    × 2sinθ . cosθ
    sinθ . cosθ

    [∵sin²θ + cos²θ = 1]
    = 2 (sinθ + cosθ) = 2m

    Correct Option: A

    cosθ + sinθ = m --- (i)
    secθ + cosecθ = n

    1
    +
    1
    = n
    cosθsinθ

    sinθ + cosθ
    = n --- (ii)
    sinθ . cosθ

    ∴ n (m² – 1) =
    sinθ + cosθ
    sinθ . cosθ

    [(sinθ + cosθ)² – 1]
    =
    sinθ + cosθ
    (sin²θ + cos²θ + 2sinθ cosθ – 1)
    sinθ . cosθ

    =
    sinθ + cosθ
    × 2sinθ . cosθ
    sinθ . cosθ

    [∵sin²θ + cos²θ = 1]
    = 2 (sinθ + cosθ) = 2m



  1. If x = a (sin θ + cos θ) and y = b (sin θ – cos θ), then the value of
    +
    is :









  1. View Hint View Answer Discuss in Forum

    x = a (sinθ + cosθ)

    x
    = sinθ + cosθ
    a

    and, y = b (sinθ – cosθ)
    y
    = sinθ - cosθ
    b

    +

    = (sinθ + cosθ)² + (sinθ – cosθ)² = 2 (sin²θ + cos²θ) = 2 [∵ (a + b)² + (a – b)² = 2 (a² + b² )]

    Correct Option: D

    x = a (sinθ + cosθ)

    x
    = sinθ + cosθ
    a

    and, y = b (sinθ – cosθ)
    y
    = sinθ - cosθ
    b

    +

    = (sinθ + cosθ)² + (sinθ – cosθ)² = 2 (sin²θ + cos²θ) = 2 [∵ (a + b)² + (a – b)² = 2 (a² + b² )]


  1. The value of the expression sin²1° + sin²11° + sin²21° + sin²31° + sin²41° + sin²45° + sin²49° + sin²59° + sin²69° + sin²79° + sin²89° is :









  1. View Hint View Answer Discuss in Forum

    sin 89° = sin (90°–1°) = cos 1°
    sin 79° = sin (90°–11°) = cos 11°
    sin 69° = sin (90°–21°) = cos 21°
    sin 59° = sin (90°–31°) = cos 31°
    sin 49° = sin (90°–41°) = cos 41°
    ∴ Expression
    = (sin²1° + cos²1°) + (sin²11° + cos²11°) + (sin²21° + cos²21°) + (sin²31° + cos²31°) + (sin²41° + cos²41°) + sin²45°

    [∵ sin²θ + cos²θ = 1]

    Correct Option: B

    sin 89° = sin (90°–1°) = cos 1°
    sin 79° = sin (90°–11°) = cos 11°
    sin 69° = sin (90°–21°) = cos 21°
    sin 59° = sin (90°–31°) = cos 31°
    sin 49° = sin (90°–41°) = cos 41°
    ∴ Expression
    = (sin²1° + cos²1°) + (sin²11° + cos²11°) + (sin²21° + cos²21°) + (sin²31° + cos²31°) + (sin²41° + cos²41°) + sin²45°

    [∵ sin²θ + cos²θ = 1]



  1. If the elevation of the Sun changes from 30° to 60°, then the difference between the lengths of shadows of a pole 15 metre high, is









  1. View Hint View Answer Discuss in Forum


    AB = Height of pole = 15 metre
    ∠ACB = 60°; ∠ADB = 30°
    In ∆ABC,

    tan 60° =
    AB
    ⇒ √3 =
    15
    BCBC

    ⇒ BC =
    15
    = 5√3 metre
    3

    In ∆ABD,
    tan 30° =
    AB
    BD

    1
    =
    15
    3BD

    ⇒ BD = 15 √3 metre
    ∴ Required difference
    = BD – BC = (15√3 - 5√3) metre
    = 10 √3 metre

    Correct Option: C


    AB = Height of pole = 15 metre
    ∠ACB = 60°; ∠ADB = 30°
    In ∆ABC,

    tan 60° =
    AB
    ⇒ √3 =
    15
    BCBC

    ⇒ BC =
    15
    = 5√3 metre
    3

    In ∆ABD,
    tan 30° =
    AB
    BD

    1
    =
    15
    3BD

    ⇒ BD = 15 √3 metre
    ∴ Required difference
    = BD – BC = (15√3 - 5√3) metre
    = 10 √3 metre