Trigonometry


  1. If 2 (cos²θ– sin²θ) = 1 (θ is a positive acute angle), then cot θ is equal to









  1. View Hint View Answer Discuss in Forum

    2(cos² θ - sin² θ) = 1

    ⇒ cos² θ - (1 - cos² θ) =
    1
    2

    ⇒ 2 cos² θ = 1 +
    1
    =
    3
    22

    ⇒ cos² θ =
    3
    4

    ⇒ sec² θ =
    4
    3

    ⇒ 1 + tan² θ =
    4
    3

    ⇒ tan² θ =
    4
    - 1 =
    1
    33

    ⇒ tan² θ =
    1
    ⇒ cot θ = √3
    3

    Correct Option: D

    2(cos² θ - sin² θ) = 1

    ⇒ cos² θ - (1 - cos² θ) =
    1
    2

    ⇒ 2 cos² θ = 1 +
    1
    =
    3
    22

    ⇒ cos² θ =
    3
    4

    ⇒ sec² θ =
    4
    3

    ⇒ 1 + tan² θ =
    4
    3

    ⇒ tan² θ =
    4
    - 1 =
    1
    33

    ⇒ tan² θ =
    1
    ⇒ cot θ = √3
    3


  1. The product cos1° cos2° cos3° cos4° .... cos100° is equal to









  1. View Hint View Answer Discuss in Forum

    cos1°.cos2°.cos3° ... cos90°....cos100° = 0 [cos90° = 0]

    Correct Option: D

    cos1°.cos2°.cos3° ... cos90°....cos100° = 0 [cos90° = 0]



  1. If tan²α = 1 + 2 tan²β (α, β are positive acute angles), then √2 cosα – cosβ is equal to









  1. View Hint View Answer Discuss in Forum

    tan⊃ α = 1 + 2 tan⊃β
    ⇒ sec⊃ α – 1 = 1 + 2(sec⊃β – 1)
    ⇒ sec⊃ α –1 = 2 sec⊃β – 1

    1
    =
    2
    cos² αcos² β

    ⇒ √2 cosα = cosβ
    ∴ √2 cosα - cosβ = 0

    Correct Option: A

    tan⊃ α = 1 + 2 tan⊃β
    ⇒ sec⊃ α – 1 = 1 + 2(sec⊃β – 1)
    ⇒ sec⊃ α –1 = 2 sec⊃β – 1

    1
    =
    2
    cos² αcos² β

    ⇒ √2 cosα = cosβ
    ∴ √2 cosα - cosβ = 0


  1. If sin 7x = cos 11x , then the value of tan 9x + cot 9x is









  1. View Hint View Answer Discuss in Forum

    sin 7x = cos 11x
    = sin (90° – 11x)
    ⇒ 7x = 90° – 11x
    ⇒ 18x = 90°
    ⇒ x = 5°
    ∴ tan 9x + cot 9x
    = tan45° + cot45°
    = 1 + 1 = 2

    Correct Option: B

    sin 7x = cos 11x
    = sin (90° – 11x)
    ⇒ 7x = 90° – 11x
    ⇒ 18x = 90°
    ⇒ x = 5°
    ∴ tan 9x + cot 9x
    = tan45° + cot45°
    = 1 + 1 = 2



  1. The minimum value of 4 tan²θ + 9 cot²θ is equal to









  1. View Hint View Answer Discuss in Forum

    4 tan⊃θ + 9 cot⊃θ
    = (2tanθ – 3cotθ)⊃ + 2 × 3 × 2
    ∴ Minimum value = 12
    [∵ (2tanθ – 3cotθ)⊃ ≥ 0]

    Correct Option: C

    4 tan⊃θ + 9 cot⊃θ
    = (2tanθ – 3cotθ)⊃ + 2 × 3 × 2
    ∴ Minimum value = 12
    [∵ (2tanθ – 3cotθ)⊃ ≥ 0]