Trigonometry


  1. The numerical value of
    5
    +
    2
    + 3 sinsec² θ is:
    sec² θ1 + cot² θ









  1. View Hint View Answer Discuss in Forum

    Expression

    =
    5
    +
    2
    + 3sin²θ
    sec²θ1 + cot²θ

    = 5cos² θ +
    2
    + 3² θ
    cosec² θ

    = 5 cos²θ + 2 sin²θ + 3 sin²θ
    = 5 (cos²θ + sin²θ) = 5

    Correct Option: A

    Expression

    =
    5
    +
    2
    + 3sin²θ
    sec²θ1 + cot²θ

    = 5cos² θ +
    2
    + 3² θ
    cosec² θ

    = 5 cos²θ + 2 sin²θ + 3 sin²θ
    = 5 (cos²θ + sin²θ) = 5


  1. If cos θ + secθ = 2, the value of cos6θ + sec6θ is









  1. View Hint View Answer Discuss in Forum

    cosθ + secθ = 2

    ⇒ cos θ +
    1
    = 2
    cos θ

    ⇒ cos²θ – 2 cosθ + 1 = 0
    ⇒ (cosθ – 1)² = 0
    ⇒ cosθ = 1
    ⇒ secθ = 1
    ∴ cos6θ + sec6θ = 1 + 1 = 2

    Correct Option: D

    cosθ + secθ = 2

    ⇒ cos θ +
    1
    = 2
    cos θ

    ⇒ cos²θ – 2 cosθ + 1 = 0
    ⇒ (cosθ – 1)² = 0
    ⇒ cosθ = 1
    ⇒ secθ = 1
    ∴ cos6θ + sec6θ = 1 + 1 = 2



  1. If 2 sin (πx / 2) = x² + (1 / x²) , then the value of [x - (1 / x)] is









  1. View Hint View Answer Discuss in Forum


    ⇒ x -
    1
    = 0 [∵ sin θ ≤ 1]
    x

    Correct Option: D


    ⇒ x -
    1
    = 0 [∵ sin θ ≤ 1]
    x


  1. The minimum value of sin²θ + cos²θ + sec²θ + cosec²θ + tan²θ + cot²θ is









  1. View Hint View Answer Discuss in Forum

    sin²θ + cos²θ + sec²θ + cosec²θ + tan²θ + cot²θ
    = 1 + sec²θ – tan²θ + cosec²θ – cot²θ + 2(tan²θ + cot²θ )
    = 3 + 2 ((tanθ – cotθ) ² + 2) > 7
    [(tanθ – cotθ) ² > 0]

    Correct Option: D

    sin²θ + cos²θ + sec²θ + cosec²θ + tan²θ + cot²θ
    = 1 + sec²θ – tan²θ + cosec²θ – cot²θ + 2(tan²θ + cot²θ )
    = 3 + 2 ((tanθ – cotθ) ² + 2) > 7
    [(tanθ – cotθ) ² > 0]



  1. In a right-angled triangle XYZ, right-angled at Y, if XY = 2 √6 and XZ – YZ = 2, then sec X + tan X is









  1. View Hint View Answer Discuss in Forum


    XZ – YZ = 2 .... (i)
    ⇒ XY² + YZ² = XZ²
    ⇒ ⇒ (2√6)² XZ² - YZ²
    ⇒ 24 = (XZ – YZ) (XZ + YZ)
    ⇒ XZ +YZ = 12 ....(ii)
    Adding both the equations,
    2 X Z = 14 ⇒ XZ = 7
    ∴ YZ = 7 – 2 = 5

    ∴ sec X =
    7
    2√6

    & tan X =
    5
    2√6

    ∴ sec X + tanX =
    7
    +
    5
    2√62√6

    =
    12
    = √6
    2√6

    Correct Option: B


    XZ – YZ = 2 .... (i)
    ⇒ XY² + YZ² = XZ²
    ⇒ ⇒ (2√6)² XZ² - YZ²
    ⇒ 24 = (XZ – YZ) (XZ + YZ)
    ⇒ XZ +YZ = 12 ....(ii)
    Adding both the equations,
    2 X Z = 14 ⇒ XZ = 7
    ∴ YZ = 7 – 2 = 5

    ∴ sec X =
    7
    2√6

    & tan X =
    5
    2√6

    ∴ sec X + tanX =
    7
    +
    5
    2√62√6

    =
    12
    = √6
    2√6