Trigonometry
-
The numerical value of 5 + 2 + 3 sinsec² θ is: sec² θ 1 + cot² θ
-
View Hint View Answer Discuss in Forum
Expression
= 5 + 2 + 3sin²θ sec²θ 1 + cot²θ = 5cos² θ + 2 + 3² θ cosec² θ
= 5 cos²θ + 2 sin²θ + 3 sin²θ
= 5 (cos²θ + sin²θ) = 5
Correct Option: A
Expression
= 5 + 2 + 3sin²θ sec²θ 1 + cot²θ = 5cos² θ + 2 + 3² θ cosec² θ
= 5 cos²θ + 2 sin²θ + 3 sin²θ
= 5 (cos²θ + sin²θ) = 5
- If cos θ + secθ = 2, the value of cos6θ + sec6θ is
-
View Hint View Answer Discuss in Forum
cosθ + secθ = 2
⇒ cos θ + 1 = 2 cos θ
⇒ cos²θ – 2 cosθ + 1 = 0
⇒ (cosθ – 1)² = 0
⇒ cosθ = 1
⇒ secθ = 1
∴ cos6θ + sec6θ = 1 + 1 = 2Correct Option: D
cosθ + secθ = 2
⇒ cos θ + 1 = 2 cos θ
⇒ cos²θ – 2 cosθ + 1 = 0
⇒ (cosθ – 1)² = 0
⇒ cosθ = 1
⇒ secθ = 1
∴ cos6θ + sec6θ = 1 + 1 = 2
- If 2 sin (πx / 2) = x² + (1 / x²) , then the value of [x - (1 / x)] is
-
View Hint View Answer Discuss in Forum
⇒ x - 1 = 0 [∵ sin θ ≤ 1] x
Correct Option: D
⇒ x - 1 = 0 [∵ sin θ ≤ 1] x
- The minimum value of sin²θ + cos²θ + sec²θ + cosec²θ + tan²θ + cot²θ is
-
View Hint View Answer Discuss in Forum
sin²θ + cos²θ + sec²θ + cosec²θ + tan²θ + cot²θ
= 1 + sec²θ – tan²θ + cosec²θ – cot²θ + 2(tan²θ + cot²θ )
= 3 + 2 ((tanθ – cotθ) ² + 2) > 7
[(tanθ – cotθ) ² > 0]Correct Option: D
sin²θ + cos²θ + sec²θ + cosec²θ + tan²θ + cot²θ
= 1 + sec²θ – tan²θ + cosec²θ – cot²θ + 2(tan²θ + cot²θ )
= 3 + 2 ((tanθ – cotθ) ² + 2) > 7
[(tanθ – cotθ) ² > 0]
- In a right-angled triangle XYZ, right-angled at Y, if XY = 2 √6 and XZ – YZ = 2, then sec X + tan X is
-
View Hint View Answer Discuss in Forum
XZ – YZ = 2 .... (i)
⇒ XY² + YZ² = XZ²
⇒ ⇒ (2√6)² XZ² - YZ²
⇒ 24 = (XZ – YZ) (XZ + YZ)
⇒ XZ +YZ = 12 ....(ii)
Adding both the equations,
2 X Z = 14 ⇒ XZ = 7
∴ YZ = 7 – 2 = 5∴ sec X = 7 2√6 & tan X = 5 2√6 ∴ sec X + tanX = 7 + 5 2√6 2√6 = 12 = √6 2√6
Correct Option: B
XZ – YZ = 2 .... (i)
⇒ XY² + YZ² = XZ²
⇒ ⇒ (2√6)² XZ² - YZ²
⇒ 24 = (XZ – YZ) (XZ + YZ)
⇒ XZ +YZ = 12 ....(ii)
Adding both the equations,
2 X Z = 14 ⇒ XZ = 7
∴ YZ = 7 – 2 = 5∴ sec X = 7 2√6 & tan X = 5 2√6 ∴ sec X + tanX = 7 + 5 2√6 2√6 = 12 = √6 2√6