Trigonometry
-  The numerical value of 5 + 2 + 3 sinsec² θ is: sec² θ 1 + cot² θ 
- 
                        View Hint View Answer Discuss in Forum Expression = 5 + 2 + 3sin²θ sec²θ 1 + cot²θ = 5cos² θ + 2 + 3² θ cosec² θ 
 = 5 cos²θ + 2 sin²θ + 3 sin²θ
 = 5 (cos²θ + sin²θ) = 5 
 Correct Option: AExpression = 5 + 2 + 3sin²θ sec²θ 1 + cot²θ = 5cos² θ + 2 + 3² θ cosec² θ 
 = 5 cos²θ + 2 sin²θ + 3 sin²θ
 = 5 (cos²θ + sin²θ) = 5 
 
-  If cos θ + secθ = 2, the value of cos6θ + sec6θ is
- 
                        View Hint View Answer Discuss in Forum cosθ + secθ = 2 ⇒ cos θ + 1 = 2 cos θ 
 ⇒ cos²θ – 2 cosθ + 1 = 0
 ⇒ (cosθ – 1)² = 0
 ⇒ cosθ = 1
 ⇒ secθ = 1
 ∴ cos6θ + sec6θ = 1 + 1 = 2Correct Option: Dcosθ + secθ = 2 ⇒ cos θ + 1 = 2 cos θ 
 ⇒ cos²θ – 2 cosθ + 1 = 0
 ⇒ (cosθ – 1)² = 0
 ⇒ cosθ = 1
 ⇒ secθ = 1
 ∴ cos6θ + sec6θ = 1 + 1 = 2
-  If 2 sin (πx / 2) = x² + (1 / x²) , then the value of [x - (1 / x)] is
- 
                        View Hint View Answer Discuss in Forum  ⇒ x - 1 = 0 [∵ sin θ ≤ 1] x 
 Correct Option: D ⇒ x - 1 = 0 [∵ sin θ ≤ 1] x 
 
-  The minimum value of sin²θ + cos²θ + sec²θ + cosec²θ + tan²θ + cot²θ is
- 
                        View Hint View Answer Discuss in Forum sin²θ + cos²θ + sec²θ + cosec²θ + tan²θ + cot²θ 
 = 1 + sec²θ – tan²θ + cosec²θ – cot²θ + 2(tan²θ + cot²θ )
 = 3 + 2 ((tanθ – cotθ) ² + 2) > 7
 [(tanθ – cotθ) ² > 0]Correct Option: Dsin²θ + cos²θ + sec²θ + cosec²θ + tan²θ + cot²θ 
 = 1 + sec²θ – tan²θ + cosec²θ – cot²θ + 2(tan²θ + cot²θ )
 = 3 + 2 ((tanθ – cotθ) ² + 2) > 7
 [(tanθ – cotθ) ² > 0]
-  In a right-angled triangle XYZ, right-angled at Y, if XY = 2 √6 and XZ – YZ = 2, then sec X + tan X is
- 
                        View Hint View Answer Discuss in Forum  
 XZ – YZ = 2 .... (i)
 ⇒ XY² + YZ² = XZ²
 ⇒ ⇒ (2√6)² XZ² - YZ²
 ⇒ 24 = (XZ – YZ) (XZ + YZ)
 ⇒ XZ +YZ = 12 ....(ii)
 Adding both the equations,
 2 X Z = 14 ⇒ XZ = 7
 ∴ YZ = 7 – 2 = 5∴ sec X = 7 2√6 & tan X = 5 2√6 ∴ sec X + tanX = 7 + 5 2√6 2√6 = 12 = √6 2√6 
 Correct Option: B 
 XZ – YZ = 2 .... (i)
 ⇒ XY² + YZ² = XZ²
 ⇒ ⇒ (2√6)² XZ² - YZ²
 ⇒ 24 = (XZ – YZ) (XZ + YZ)
 ⇒ XZ +YZ = 12 ....(ii)
 Adding both the equations,
 2 X Z = 14 ⇒ XZ = 7
 ∴ YZ = 7 – 2 = 5∴ sec X = 7 2√6 & tan X = 5 2√6 ∴ sec X + tanX = 7 + 5 2√6 2√6 = 12 = √6 2√6 
 
 
	