Trigonometry
-
The value of 4 = 3 + 3 sin² α will be 1 + cot²α 1 + cot²α
-
View Hint View Answer Discuss in Forum
4 + 1 + 3 sin²α 1 + tan²α 1 + cot²α 4 + 1 + 3 sin²α sec²α cosec²α
= 4 cos²α + sin²α + 3 sin²α
= 4(cos²α + sin²α) = 4Correct Option: A
4 + 1 + 3 sin²α 1 + tan²α 1 + cot²α 4 + 1 + 3 sin²α sec²α cosec²α
= 4 cos²α + sin²α + 3 sin²α
= 4(cos²α + sin²α) = 4
-
The numerical value of 1 = 3 + 2 sin² θ will be 1 + cot²θ 1 + tan²θ
-
View Hint View Answer Discuss in Forum
1 + 3 + 2sin² θ 1 + cot² θ 1 + tan² θ = 1 + 3 + 2sin² θ cosec² θ sec² θ
= sin² θ + 3cos² θ + 2sin² θ
= 3(sin² θ + cos² θ) = 3
Correct Option: D
1 + 3 + 2sin² θ 1 + cot² θ 1 + tan² θ = 1 + 3 + 2sin² θ cosec² θ sec² θ
= sin² θ + 3cos² θ + 2sin² θ
= 3(sin² θ + cos² θ) = 3
-
If x cos θ – y sin θ = √x² + y² cos²θ + sin²θ = 1 , then the correct relation is a² b² x² + y²
-
View Hint View Answer Discuss in Forum
According to question,
x cosθ – y sinθ = √x² + y²...(i)cos²θ + sin²θ = 1 ...(ii) a² b² x² + y² sinθ = - y √x² + y² cosθ = x √x² + y²
From equation (i)x cosθ - y sinθ = 1 √x² + y² √x² + y² ∴ cos²θ + sin²θ = 1 a² b² x² + y² ⇒ x² + y² = 1 (x² + y²)a² (x² + y²)b² x² + y² ⇒ x² + y² = 1 a² b²
Correct Option: B
According to question,
x cosθ – y sinθ = √x² + y²...(i)cos²θ + sin²θ = 1 ...(ii) a² b² x² + y² sinθ = - y √x² + y² cosθ = x √x² + y²
From equation (i)x cosθ - y sinθ = 1 √x² + y² √x² + y² ∴ cos²θ + sin²θ = 1 a² b² x² + y² ⇒ x² + y² = 1 (x² + y²)a² (x² + y²)b² x² + y² ⇒ x² + y² = 1 a² b²
- If cos x + cos²x = 1, the numerical value of (sin12x + 3 sin10x + 3 sin8x + sin6x – l) is :
-
View Hint View Answer Discuss in Forum
cos x + cos² x = 1
⇒ cos x = 1 – cos² x = sin² x ...(i)
∴ sin12x + 3 sin10x + 3 sin8x + sin6x – 1
= (sin4 x + sin2 x)3 – 1
= (cos2x + sin2x)3 – 1 [By (i)]
= 1 – 1 = 0Correct Option: C
cos x + cos² x = 1
⇒ cos x = 1 – cos² x = sin² x ...(i)
∴ sin12x + 3 sin10x + 3 sin8x + sin6x – 1
= (sin4 x + sin2 x)3 – 1
= (cos2x + sin2x)3 – 1 [By (i)]
= 1 – 1 = 0
-
If sec θ + tan θ = 5 , then sin θ is equal to sec θ - tan θ 3
-
View Hint View Answer Discuss in Forum
secθ + tanθ = 5 secθ - tanθ 3
⇒ 5 sec θ – 5 tan θ
= 3 sec θ + 3 tan θ
⇒ 2 sec θ = 8 tan θ= tanθ = 2 = 1 secθ 8 4 ⇒ sinθ × cosθ = 1 cosθ 4 ⇒ sinθ = 1 4
Correct Option: A
secθ + tanθ = 5 secθ - tanθ 3
⇒ 5 sec θ – 5 tan θ
= 3 sec θ + 3 tan θ
⇒ 2 sec θ = 8 tan θ= tanθ = 2 = 1 secθ 8 4 ⇒ sinθ × cosθ = 1 cosθ 4 ⇒ sinθ = 1 4