Trigonometry
-  The value of 4 = 3 + 3 sin² α will be 1 + cot²α 1 + cot²α 
- 
                        View Hint View Answer Discuss in Forum 4 + 1 + 3 sin²α 1 + tan²α 1 + cot²α 4 + 1 + 3 sin²α sec²α cosec²α 
 = 4 cos²α + sin²α + 3 sin²α
 = 4(cos²α + sin²α) = 4Correct Option: A4 + 1 + 3 sin²α 1 + tan²α 1 + cot²α 4 + 1 + 3 sin²α sec²α cosec²α 
 = 4 cos²α + sin²α + 3 sin²α
 = 4(cos²α + sin²α) = 4
-  The numerical value of 1 = 3 + 2 sin² θ will be 1 + cot²θ 1 + tan²θ 
- 
                        View Hint View Answer Discuss in Forum 1 + 3 + 2sin² θ 1 + cot² θ 1 + tan² θ = 1 + 3 + 2sin² θ cosec² θ sec² θ 
 = sin² θ + 3cos² θ + 2sin² θ
 = 3(sin² θ + cos² θ) = 3
 Correct Option: D1 + 3 + 2sin² θ 1 + cot² θ 1 + tan² θ = 1 + 3 + 2sin² θ cosec² θ sec² θ 
 = sin² θ + 3cos² θ + 2sin² θ
 = 3(sin² θ + cos² θ) = 3
 
-  If x cos θ – y sin θ = √x² + y² cos²θ + sin²θ = 1 , then the correct relation is a² b² x² + y² 
- 
                        View Hint View Answer Discuss in Forum According to question, 
 x cosθ – y sinθ = √x² + y²...(i)cos²θ + sin²θ = 1 ...(ii) a² b² x² + y²  sinθ = - y √x² + y² cosθ = x √x² + y² 
 From equation (i)x cosθ - y sinθ = 1 √x² + y² √x² + y² ∴ cos²θ + sin²θ = 1 a² b² x² + y² ⇒ x² + y² = 1 (x² + y²)a² (x² + y²)b² x² + y² ⇒ x² + y² = 1 a² b² 
 Correct Option: BAccording to question, 
 x cosθ – y sinθ = √x² + y²...(i)cos²θ + sin²θ = 1 ...(ii) a² b² x² + y²  sinθ = - y √x² + y² cosθ = x √x² + y² 
 From equation (i)x cosθ - y sinθ = 1 √x² + y² √x² + y² ∴ cos²θ + sin²θ = 1 a² b² x² + y² ⇒ x² + y² = 1 (x² + y²)a² (x² + y²)b² x² + y² ⇒ x² + y² = 1 a² b² 
 
-  If cos x + cos²x = 1, the numerical value of (sin12x + 3 sin10x + 3 sin8x + sin6x – l) is :
- 
                        View Hint View Answer Discuss in Forum cos x + cos² x = 1 
 ⇒ cos x = 1 – cos² x = sin² x ...(i)
 ∴ sin12x + 3 sin10x + 3 sin8x + sin6x – 1
 = (sin4 x + sin2 x)3 – 1
 = (cos2x + sin2x)3 – 1 [By (i)]
 = 1 – 1 = 0Correct Option: Ccos x + cos² x = 1 
 ⇒ cos x = 1 – cos² x = sin² x ...(i)
 ∴ sin12x + 3 sin10x + 3 sin8x + sin6x – 1
 = (sin4 x + sin2 x)3 – 1
 = (cos2x + sin2x)3 – 1 [By (i)]
 = 1 – 1 = 0
-  If sec θ + tan θ = 5 , then sin θ is equal to sec θ - tan θ 3 
- 
                        View Hint View Answer Discuss in Forum secθ + tanθ = 5 secθ - tanθ 3 
 ⇒ 5 sec θ – 5 tan θ
 = 3 sec θ + 3 tan θ
 ⇒ 2 sec θ = 8 tan θ= tanθ = 2 = 1 secθ 8 4 ⇒ sinθ × cosθ = 1 cosθ 4 ⇒ sinθ = 1 4 
 Correct Option: Asecθ + tanθ = 5 secθ - tanθ 3 
 ⇒ 5 sec θ – 5 tan θ
 = 3 sec θ + 3 tan θ
 ⇒ 2 sec θ = 8 tan θ= tanθ = 2 = 1 secθ 8 4 ⇒ sinθ × cosθ = 1 cosθ 4 ⇒ sinθ = 1 4 
 
 
	