Trigonometry
-  The ratio of the length of a rod and its shadow is 1 : √3 . The angle of elevation of the sun is :
- 
                        View Hint View Answer Discuss in Forum  AB = 1 BC √3 tanθ = AB = 1 BC √3 
 ⇒ tanθ = tan 30°
 ⇒ θ = 30°Correct Option: B AB = 1 BC √3 tanθ = AB = 1 BC √3 
 ⇒ tanθ = tan 30°
 ⇒ θ = 30°
-  If the angle of elevation of the sun changes from 45° to 60°, then the length of the shadow of a pillar decreases by 10 m. The height of the pillar is :
- 
                        View Hint View Answer Discuss in Forum  
 AB = Height of pillar = h metre (let)
 CD = 10 metre
 ∠ACB = 45°
 ∠ADB = 60°
 BD = x metre (let)
 From ∆ABCtan 45° = AB BC ⇒ 1 = h x + 10 
 ⇒ h = (x + 10) metre (i)
 From ∆ABDtan 60° = AB BD ⇒ √3 = h x ⇒ x = h metre (ii) √3 
 From equation (i),h = h + 10 √3 ⇒ h - h = 10 √3 ⇒ √3h - h = 10 √3 
 ⇒ h(√3 - 1) = 10√3⇒ h = 10√3 √3- 1 = 10√3(√3+ 1) (√3- 1)(√3+ 1) = 10√3(√3+ 1) 3 - 1 
 = 5√3 (√3 + 1)
 = 5 (3 + √3)metreCorrect Option: D 
 AB = Height of pillar = h metre (let)
 CD = 10 metre
 ∠ACB = 45°
 ∠ADB = 60°
 BD = x metre (let)
 From ∆ABCtan 45° = AB BC ⇒ 1 = h x + 10 
 ⇒ h = (x + 10) metre (i)
 From ∆ABDtan 60° = AB BD ⇒ √3 = h x ⇒ x = h metre (ii) √3 
 From equation (i),h = h + 10 √3 ⇒ h - h = 10 √3 ⇒ √3h - h = 10 √3 
 ⇒ h(√3 - 1) = 10√3⇒ h = 10√3 √3- 1 = 10√3(√3+ 1) (√3- 1)(√3+ 1) = 10√3(√3+ 1) 3 - 1 
 = 5√3 (√3 + 1)
 = 5 (3 + √3)metre
-  TF is a tower with F on the ground. The angle of elevation of T from A is x° such that tan x° = (2 / 5) and AF = 200m. The angle of elevation of T from a nearer point B is y° with BF = 80m. The value of y° is
- 
                        View Hint View Answer Discuss in Forum  
 TF = Tower = h metre
 ∠TAF = x° ; ∠TBF = y°,
 BF = 80 metre
 In ∆AFT,tan x° = TF AF ⇒ 2 = h 5 200 ⇒ h = 2 × 200 5 
 = 80 metre
 In ∆BFTtan y° = TF FB ⇒ tan y° = 80 = 1 80 
 ⇒ tan y° = tan 45°
 ⇒ y = 45°Correct Option: D 
 TF = Tower = h metre
 ∠TAF = x° ; ∠TBF = y°,
 BF = 80 metre
 In ∆AFT,tan x° = TF AF ⇒ 2 = h 5 200 ⇒ h = 2 × 200 5 
 = 80 metre
 In ∆BFTtan y° = TF FB ⇒ tan y° = 80 = 1 80 
 ⇒ tan y° = tan 45°
 ⇒ y = 45°
-  If sin A – cos A = (√3 - 1 / 2) , then the value of sin A . cos A is
- 
                        View Hint View Answer Discuss in Forum sinA – cosA = √3 - 1 2 
 On squaring both sides,
 sin²A + cos²A – 2 sinA . cosA  
 ⇒ 1 – 2 sinA cosA= 1 (4 - 2√3) 4 ⇒ 1 – 2 sinA cosA = 2 - √3 2 
 ⇒ 2 – 4 sinA cosA = 2 – √3
 ⇒ 4 sinA . cosA = 2–2+ √3 = √3⇒ sinA.cosA = √3 4 
 Correct Option: CsinA – cosA = √3 - 1 2 
 On squaring both sides,
 sin²A + cos²A – 2 sinA . cosA  
 ⇒ 1 – 2 sinA cosA= 1 (4 - 2√3) 4 ⇒ 1 – 2 sinA cosA = 2 - √3 2 
 ⇒ 2 – 4 sinA cosA = 2 – √3
 ⇒ 4 sinA . cosA = 2–2+ √3 = √3⇒ sinA.cosA = √3 4 
 
-  The value of x in the equation 
- 
                        View Hint View Answer Discuss in Forum tan² π - cos² π 4 3 = x sin π . cos π . tan π 4 4 3  ⇒ 1 - 1 = x × √3 4 2 ⇒ 4 - 1 = x × √3 4 2 ⇒ x = 3 × 2 = √3 4 √3 2 
 Correct Option: Dtan² π - cos² π 4 3 = x sin π . cos π . tan π 4 4 3  ⇒ 1 - 1 = x × √3 4 2 ⇒ 4 - 1 = x × √3 4 2 ⇒ x = 3 × 2 = √3 4 √3 2 
 
 
	