Trigonometry


  1. If a sin θ + b cos θ = c, then a cos θ – b sin θ is equal to









  1. View Hint View Answer Discuss in Forum

    a sinθ + b cosθ = c .... (i)
    a cosθ – b sinθ = x (let) ... (ii)
    On squaring equations (i) and (ii) and adding, a 2sin²θ + b 2cos²θ + 2ab sinθ. cosθ + a 2cos²θ + b 2sin²θ – 2absinθ. cosθ = c² + x²
    ⇒ a² (sin2θ + cos2θ) + b 2 (cos²θ + sin²θ) = c² + x²
    ⇒ a² + b² = c²² + x²
    ⇒ x² = a² + b² – c²
    ⇒ x = ± √a² + b² -c²

    Correct Option: C

    a sinθ + b cosθ = c .... (i)
    a cosθ – b sinθ = x (let) ... (ii)
    On squaring equations (i) and (ii) and adding, a 2sin²θ + b 2cos²θ + 2ab sinθ. cosθ + a 2cos²θ + b 2sin²θ – 2absinθ. cosθ = c² + x²
    ⇒ a² (sin2θ + cos2θ) + b 2 (cos²θ + sin²θ) = c² + x²
    ⇒ a² + b² = c²² + x²
    ⇒ x² = a² + b² – c²
    ⇒ x = ± √a² + b² -c²


  1. If tan α = 2, then the value of
    cosec²α - sec²α
    is
    cosec²α + sec²α









  1. View Hint View Answer Discuss in Forum

    tan α = 2

    cosec²α - sec²α
    cosec²α + sec²α

    =
    1 + cot²α - 1 - tan²α
    cot²α + tan²α + 2

    =
    cot²α - tan²α
    cot²α + tan²α + 2


    =
    - 15
    =
    - 3
    255

    Correct Option: B

    tan α = 2

    cosec²α - sec²α
    cosec²α + sec²α

    =
    1 + cot²α - 1 - tan²α
    cot²α + tan²α + 2

    =
    cot²α - tan²α
    cot²α + tan²α + 2


    =
    - 15
    =
    - 3
    255



  1. The value of (1 + sec 20° + cot 70°) (1 – cosec 20° + tan 70°) is equal to









  1. View Hint View Answer Discuss in Forum

    (1 + sec 20° + cot 70°) (1 – cosec 20° + tan 70°)
    = (1 + sec 20° + tan 20°) (1 – cosec 20° + cot 20°)
    [∵ tan (90° – θ) = cotθ ; cot (90° – θ) = tanθ]

    =1 + 1+sin 20°
    cos 20°cos 20°

    =1 - 1+cos 20°
    sin 20°sin 20°

    =
    cos 20° + 1 + sin 20°
    .
    sin 20° - 1 + cos 20°
    cos 20°sin 20°

    =
    (cos 20° + sin 20°)² - 1
    sin 20° . cos 20°

    =
    cos² 20° + sin² 20° + 2 sin 20° . cos 20° - 1
    sin 20° . cos 20°

    =
    1 + sin 20° . cos 20° - 1
    = 2
    sin 20° . cos 20°

    Correct Option: C

    (1 + sec 20° + cot 70°) (1 – cosec 20° + tan 70°)
    = (1 + sec 20° + tan 20°) (1 – cosec 20° + cot 20°)
    [∵ tan (90° – θ) = cotθ ; cot (90° – θ) = tanθ]

    =1 + 1+sin 20°
    cos 20°cos 20°

    =1 - 1+cos 20°
    sin 20°sin 20°

    =
    cos 20° + 1 + sin 20°
    .
    sin 20° - 1 + cos 20°
    cos 20°sin 20°

    =
    (cos 20° + sin 20°)² - 1
    sin 20° . cos 20°

    =
    cos² 20° + sin² 20° + 2 sin 20° . cos 20° - 1
    sin 20° . cos 20°

    =
    1 + sin 20° . cos 20° - 1
    = 2
    sin 20° . cos 20°


  1. If 0° < A < 90°, the value of
    tan A – sec A –1
    is
    tan A + sec A + 1









  1. View Hint View Answer Discuss in Forum

    =
    tanA - secA - 1
    tanA + secA + 1

    =
    tanA - secA - (sec²A - tan²A)
    tanA + secA + 1

    =
    (tanA – secA) – (secA – tanA)(secA tanA)
    tanA + secA + 1

    =
    (tanA – secA) + (tanA – secA)(secA tanA)
    tanA + secA + 1

    =
    (tanA – secA)(1 secA tanA)
    tanA + secA + 1

    = tanA – secA =
    sinA
    -
    1
    cosAcosA

    =
    sinA - 1
    cosA

    Correct Option: A

    =
    tanA - secA - 1
    tanA + secA + 1

    =
    tanA - secA - (sec²A - tan²A)
    tanA + secA + 1

    =
    (tanA – secA) – (secA – tanA)(secA tanA)
    tanA + secA + 1

    =
    (tanA – secA) + (tanA – secA)(secA tanA)
    tanA + secA + 1

    =
    (tanA – secA)(1 secA tanA)
    tanA + secA + 1

    = tanA – secA =
    sinA
    -
    1
    cosAcosA

    =
    sinA - 1
    cosA



  1. If α is an cute angle and 2 sin α + 15 cos²α = 7 then the value of cot α is









  1. View Hint View Answer Discuss in Forum

    2 sinα + 15 cos²α = 7
    ⇒ 2 sinα + 15 (1 – sin²α) = 7
    ⇒ 2 sinα + 15 – 15 sin²α = 7
    ⇒ 15 sin²α – 2 sinα – 15 + 7 = 0
    ⇒ 15 sin²α – 2 sinα – 8 = 0
    ⇒ 15 sin²α – 12 sinα + 10 sinα – 8 = 0
    ⇒ 3 sinα (5 sinα – 4) + 2 (5 sinα – 4) = 0
    ⇒ (3 sinα + 2) (5 sinα – 4) = 0

    ⇒ 5 sinα – 4 = 0 ⇒ sinα =
    4
    5

    sinα ≠ -
    2
    because α is acute angle.
    1
    3

    ∴ cotα = √cosec²α - 1

    Correct Option: D

    2 sinα + 15 cos²α = 7
    ⇒ 2 sinα + 15 (1 – sin²α) = 7
    ⇒ 2 sinα + 15 – 15 sin²α = 7
    ⇒ 15 sin²α – 2 sinα – 15 + 7 = 0
    ⇒ 15 sin²α – 2 sinα – 8 = 0
    ⇒ 15 sin²α – 12 sinα + 10 sinα – 8 = 0
    ⇒ 3 sinα (5 sinα – 4) + 2 (5 sinα – 4) = 0
    ⇒ (3 sinα + 2) (5 sinα – 4) = 0

    ⇒ 5 sinα – 4 = 0 ⇒ sinα =
    4
    5

    sinα ≠ -
    2
    because α is acute angle.
    1
    3

    ∴ cotα = √cosec²α - 1