Trigonometry


  1. If secθ + tanθ = p, (p ≠ 0) then secθ is equal to









  1. View Hint View Answer Discuss in Forum

    secθ + tanθ = p .....(i)
    ∵ sec²θ – tan²θ = 1
    ⇒ (secθ + tanθ) (secθ – tanθ) = 1

    ⇒ secθ – tanθ =
    1
    ....(ii)
    p

    On adding both the equations
    2 secθ = p +
    1
    p

    ⇒ secθ =
    1
    p + 1
    2p

    Correct Option: D

    secθ + tanθ = p .....(i)
    ∵ sec²θ – tan²θ = 1
    ⇒ (secθ + tanθ) (secθ – tanθ) = 1

    ⇒ secθ – tanθ =
    1
    ....(ii)
    p

    On adding both the equations
    2 secθ = p +
    1
    p

    ⇒ secθ =
    1
    p + 1
    2p


  1. If 1 + cos²θ = 3 sinθ cosθ, then the integral value of
    cot θ0 < θ < πis
    2









  1. View Hint View Answer Discuss in Forum

    1 + cos²θ = 3 sinθ . cosθ
    Dividing both sides by sin²θ

    1
    +
    cos²θ
    =
    3sinθcosθ
    sin²θsin²θsin²θ

    ⇒ cosec²θ + cot²θ = 3 cot θ
    ⇒ 1 + cot²θ + cot²θ = 3 cotθ
    ⇒ 2 cot²θ – 3 cotθ + 1 = 0
    ⇒ 2 cot²θ – 2 cotθ – cotθ + 1 = 0
    ⇒ 2 cot²θ (cot θ – 1) – 1 (cot θ – 1) = 0
    ⇒ (2cot θ –1) (cot θ –1) = 0
    ⇒ cot θ =
    1
    or 1
    2

    Correct Option: A

    1 + cos²θ = 3 sinθ . cosθ
    Dividing both sides by sin²θ

    1
    +
    cos²θ
    =
    3sinθcosθ
    sin²θsin²θsin²θ

    ⇒ cosec²θ + cot²θ = 3 cot θ
    ⇒ 1 + cot²θ + cot²θ = 3 cotθ
    ⇒ 2 cot²θ – 3 cotθ + 1 = 0
    ⇒ 2 cot²θ – 2 cotθ – cotθ + 1 = 0
    ⇒ 2 cot²θ (cot θ – 1) – 1 (cot θ – 1) = 0
    ⇒ (2cot θ –1) (cot θ –1) = 0
    ⇒ cot θ =
    1
    or 1
    2



  1. The value of the following is : 3(sin4θ + cos4θ) + 2(sin6θ + cos6θ) + 12sin2θ cos2θ









  1. View Hint View Answer Discuss in Forum

    Expression = 3(sin4 θ + cos4 θ) + 2(sin6 θ + cos6 θ) + 12 sin² θ. cos² θ
    = 3{(sin² θ + cos² θ)² – 2 sin² θ . cos² θ} + 2{(sin² θ + cos² θ)3 – 3 sin² θ . cos² θ (sin² θ + cos² θ) + 12 sin² θ . cos² θ [∵ a² + b²
    = (a + b)² – 2ab ; a3 + b3
    = (a + b)3 – 3ab (a + b)]
    = 3 (1 – 2 sin²θ. cos²θ) + 2 (1 – 3 sin²θ . cos²θ) + 12 sin²θ. cos²θ = 3 – 6 sin²θ . cos²θ + 2 – 6
    sin²θ cos²θ + 12 sin²θ . cos²θ=5

    Correct Option: D

    Expression = 3(sin4 θ + cos4 θ) + 2(sin6 θ + cos6 θ) + 12 sin² θ. cos² θ
    = 3{(sin² θ + cos² θ)² – 2 sin² θ . cos² θ} + 2{(sin² θ + cos² θ)3 – 3 sin² θ . cos² θ (sin² θ + cos² θ) + 12 sin² θ . cos² θ [∵ a² + b²
    = (a + b)² – 2ab ; a3 + b3
    = (a + b)3 – 3ab (a + b)]
    = 3 (1 – 2 sin²θ. cos²θ) + 2 (1 – 3 sin²θ . cos²θ) + 12 sin²θ. cos²θ = 3 – 6 sin²θ . cos²θ + 2 – 6
    sin²θ cos²θ + 12 sin²θ . cos²θ=5


  1. If secθ + tanθ = 2 + √5 , then the value of sinθ is (0° ≤ θ ≤ 90°)









  1. View Hint View Answer Discuss in Forum

    sec θ + tan θ = 2 + 5
    ∵ sec²θ – tan²θ = 1
    ⇒ (sec θ + tan θ) (sec θ – tan θ) = 1

    ⇒ sec θ – tan θ =
    1
    5 + 2

    =
    1
    ×
    5 - 2
    =
    5 - 2

    5 + 25 - 25 - 4

    = √5 - 2
    ∴ sec θ + tan θ + sec θ – tan θ = 2 + √5 + √5 - 2
    ⇒ 2 secθ = 2√5
    ⇒ secθ = √5 ....(i)
    Again,
    sec θ + tan θ – (sec θ – tan θ)
    = 2 + √5 - √5 + 2
    ⇒ 2 tanθ = 4
    ⇒ tanθ = 2 ....(ii)
    ∴ sin θ
    tan θ
    =
    2
    sec θ5

    Correct Option: B

    sec θ + tan θ = 2 + 5
    ∵ sec²θ – tan²θ = 1
    ⇒ (sec θ + tan θ) (sec θ – tan θ) = 1

    ⇒ sec θ – tan θ =
    1
    5 + 2

    =
    1
    ×
    5 - 2
    =
    5 - 2

    5 + 25 - 25 - 4

    = √5 - 2
    ∴ sec θ + tan θ + sec θ – tan θ = 2 + √5 + √5 - 2
    ⇒ 2 secθ = 2√5
    ⇒ secθ = √5 ....(i)
    Again,
    sec θ + tan θ – (sec θ – tan θ)
    = 2 + √5 - √5 + 2
    ⇒ 2 tanθ = 4
    ⇒ tanθ = 2 ....(ii)
    ∴ sin θ
    tan θ
    =
    2
    sec θ5



  1. If
    secθ + tanθ
    = 2
    51
    then the value of sin θ is
    secθ - tanθ79









  1. View Hint View Answer Discuss in Forum

    sec θ + tan θ
    = 2
    51
    sec θ - tan θ79

    158 + 51
    =
    209
    7979

    By componendo and dividendo,
    sec θ + tan θ + sec θ - tan θ
    =
    209 + 79
    sec θ + tan θ - sec θ + tan θ209 - 79

    2 sec θ
    =
    288
    2 tan θ130

    sec θ
    =
    144
    tan θ65

    ∴ sinθ =
    tan θ
    =
    65
    sec θ144

    Correct Option: B

    sec θ + tan θ
    = 2
    51
    sec θ - tan θ79

    158 + 51
    =
    209
    7979

    By componendo and dividendo,
    sec θ + tan θ + sec θ - tan θ
    =
    209 + 79
    sec θ + tan θ - sec θ + tan θ209 - 79

    2 sec θ
    =
    288
    2 tan θ130

    sec θ
    =
    144
    tan θ65

    ∴ sinθ =
    tan θ
    =
    65
    sec θ144