Home » Aptitude » Trigonometry » Question
  1. If secθ + tanθ = 2 + √5 , then the value of sinθ is (0° ≤ θ ≤ 90°)
    1. 3
      2
    2. 2
      5
    3. 1
      5
    4. 4
      5
Correct Option: B

sec θ + tan θ = 2 + 5
∵ sec²θ – tan²θ = 1
⇒ (sec θ + tan θ) (sec θ – tan θ) = 1

⇒ sec θ – tan θ =
1
5 + 2

=
1
×
5 - 2
=
5 - 2

5 + 25 - 25 - 4

= √5 - 2
∴ sec θ + tan θ + sec θ – tan θ = 2 + √5 + √5 - 2
⇒ 2 secθ = 2√5
⇒ secθ = √5 ....(i)
Again,
sec θ + tan θ – (sec θ – tan θ)
= 2 + √5 - √5 + 2
⇒ 2 tanθ = 4
⇒ tanθ = 2 ....(ii)
∴ sin θ
tan θ
=
2
sec θ5



Your comments will be displayed only after manual approval.