Trigonometry
-  If y = 2secθ and x = 3 tanθ then x2 − y2 is 9 4 
- 
                        View Hint View Answer Discuss in Forum y = 2secθ ⇒ secθ = y 2 and x = 3 tanθ ⇒ tanθ = x 3 
 ∵ sec2θ – tan2θ = 1⇒ y2 − x2 = 1 4 9 ⇒ x2 − y2 = 1 9 4 Correct Option: By = 2secθ ⇒ secθ = y 2 and x = 3 tanθ ⇒ tanθ = x 3 
 ∵ sec2θ – tan2θ = 1⇒ y2 − x2 = 1 4 9 ⇒ x2 − y2 = 1 9 4 
-  If cosecθ + sinθ = 5 then the value of sinq is equal to cosecθ − sinθ 3 
- 
                        View Hint View Answer Discuss in Forum cosecθ + sinθ = 5 cosecθ − sinθ 3 
 ⇒ 5 cosecθ – 5 sinθ
 = 3 cosecθ + 3 sinθ
 ⇒ 5 cosecθ – 3 cosecθ
 = 5 sinθ + 3 sinθ
 ⇒ 2 cosecθ = 8 sinθ⇒ 1 = 4 sinθ sinθ 
 ⇒ 4 sin2θ = 1 ⇒ 2sinθ = 1⇒ sinθ = 1 2 Correct Option: Acosecθ + sinθ = 5 cosecθ − sinθ 3 
 ⇒ 5 cosecθ – 5 sinθ
 = 3 cosecθ + 3 sinθ
 ⇒ 5 cosecθ – 3 cosecθ
 = 5 sinθ + 3 sinθ
 ⇒ 2 cosecθ = 8 sinθ⇒ 1 = 4 sinθ sinθ 
 ⇒ 4 sin2θ = 1 ⇒ 2sinθ = 1⇒ sinθ = 1 2 
-  If sinθ = √3 and 0° < θ < 90°, then the value of tan (θ – 15°) is 2 
- 
                        View Hint View Answer Discuss in Forum sinθ = √3 = sin60° 2 
 ⇒ θ = 60°
 ∴ tan (θ – 15°)
 = tan (60° – 15°) = tan 45° = 1Correct Option: Asinθ = √3 = sin60° 2 
 ⇒ θ = 60°
 ∴ tan (θ – 15°)
 = tan (60° – 15°) = tan 45° = 1
-  If the angle of elevation of the Sun changes from 30° to 45°, the length of the shadow of a pillar decreases by 20 metres. The height of the pillar is
- 
                        View Hint View Answer Discuss in Forum  
 Let AB be a pillar of height h meter
 If BD = length of shadow = x
 and DC = 20 m
 then, BC = BD + DC
 ⇒ BC = (x + 20) metre
 From ∆ ABD,tan 45° = h ⇒ h = x ...(i) x 
 From ∆ ABC,tan30° = AB ⇒ 1 = h BC √3 x + 20 ⇒ 1 = h ⇒ √3h = h + 20 √3 x + 20 
 [From (i)]⇒ (√3 - 1)h = 20 ⇒ h = h √3 - 1 = 20 × √3 + 1 √3 - 1 √3 + 1 = 20(√3 + 1) = 10(√3 + 1) metre 2 Correct Option: D 
 Let AB be a pillar of height h meter
 If BD = length of shadow = x
 and DC = 20 m
 then, BC = BD + DC
 ⇒ BC = (x + 20) metre
 From ∆ ABD,tan 45° = h ⇒ h = x ...(i) x 
 From ∆ ABC,tan30° = AB ⇒ 1 = h BC √3 x + 20 ⇒ 1 = h ⇒ √3h = h + 20 √3 x + 20 
 [From (i)]⇒ (√3 - 1)h = 20 ⇒ h = h √3 - 1 = 20 × √3 + 1 √3 - 1 √3 + 1 = 20(√3 + 1) = 10(√3 + 1) metre 2 
-  The value of (1 + tan2θ) (1 – sin2θ)
- 
                        View Hint View Answer Discuss in Forum Expression 
 = (1 + tan2θ) .(1 – sin2θ)
 = sec2θ . cos2θ = 1
 [∵ sec2θ – tan2θ = 1 = sin2θ + cos2θ ; secθ . cosθ = 1]Correct Option: BExpression 
 = (1 + tan2θ) .(1 – sin2θ)
 = sec2θ . cos2θ = 1
 [∵ sec2θ – tan2θ = 1 = sin2θ + cos2θ ; secθ . cosθ = 1]
 
	