Trigonometry


  1. If   y = 2secθ and x = 3 tanθ then
    x2
    y2
      is
    94









  1. View Hint View Answer Discuss in Forum

    y = 2secθ ⇒ secθ =
    y
    2

    and x = 3 tanθ ⇒ tanθ =
    x
    3

    ∵  sec2θ – tan2θ = 1
    ⇒ 
    y2
    x2
    = 1
    49

    ⇒ 
    x2
    y2
    = 1
    94

    Correct Option: B

    y = 2secθ ⇒ secθ =
    y
    2

    and x = 3 tanθ ⇒ tanθ =
    x
    3

    ∵  sec2θ – tan2θ = 1
    ⇒ 
    y2
    x2
    = 1
    49

    ⇒ 
    x2
    y2
    = 1
    94


  1. If  
    cosecθ + sinθ
    =
    5
      then the value of sinq is equal to
    cosecθ − sinθ3









  1. View Hint View Answer Discuss in Forum

    cosecθ + sinθ
    =
    5
    cosecθ − sinθ3

    ⇒  5 cosecθ – 5 sinθ
    = 3 cosecθ + 3 sinθ
    ⇒  5 cosecθ – 3 cosecθ
    = 5 sinθ + 3 sinθ
    ⇒  2 cosecθ = 8 sinθ
    ⇒ 
    1
    = 4 sinθ
    sinθ

    ⇒  4 sin2θ = 1 ⇒ 2sinθ = 1
    ⇒  sinθ =
    1
    2

    Correct Option: A

    cosecθ + sinθ
    =
    5
    cosecθ − sinθ3

    ⇒  5 cosecθ – 5 sinθ
    = 3 cosecθ + 3 sinθ
    ⇒  5 cosecθ – 3 cosecθ
    = 5 sinθ + 3 sinθ
    ⇒  2 cosecθ = 8 sinθ
    ⇒ 
    1
    = 4 sinθ
    sinθ

    ⇒  4 sin2θ = 1 ⇒ 2sinθ = 1
    ⇒  sinθ =
    1
    2



  1. If sinθ =
    3
    and 0° < θ < 90°, then the value of tan (θ – 15°) is
    2









  1. View Hint View Answer Discuss in Forum

    sinθ =
    3
    = sin60°
    2

    ⇒  θ = 60°
    ∴  tan (θ – 15°)
    = tan (60° – 15°) = tan 45° = 1

    Correct Option: A

    sinθ =
    3
    = sin60°
    2

    ⇒  θ = 60°
    ∴  tan (θ – 15°)
    = tan (60° – 15°) = tan 45° = 1


  1. If the angle of elevation of the Sun changes from 30° to 45°, the length of the shadow of a pillar decreases by 20 metres. The height of the pillar is









  1. View Hint View Answer Discuss in Forum


    Let AB be a pillar of height h meter
    If BD = length of shadow = x
    and DC = 20 m
    then, BC = BD + DC
    ⇒ BC = (x + 20) metre
    From ∆ ABD,

    tan 45° =
    h
    ⇒ h = x ...(i)
    x

    From ∆ ABC,
    tan30° =
    AB
    1
    =
    h
    BC3x + 20

    1
    =
    h
    ⇒ √3h = h + 20
    3x + 20

    [From (i)]
    ⇒ (√3 - 1)h = 20 ⇒ h =
    h
    3 - 1

    =
    20
    ×
    3 + 1
    3 - 13 + 1

    =
    20(√3 + 1)
    = 10(√3 + 1) metre
    2

    Correct Option: D


    Let AB be a pillar of height h meter
    If BD = length of shadow = x
    and DC = 20 m
    then, BC = BD + DC
    ⇒ BC = (x + 20) metre
    From ∆ ABD,

    tan 45° =
    h
    ⇒ h = x ...(i)
    x

    From ∆ ABC,
    tan30° =
    AB
    1
    =
    h
    BC3x + 20

    1
    =
    h
    ⇒ √3h = h + 20
    3x + 20

    [From (i)]
    ⇒ (√3 - 1)h = 20 ⇒ h =
    h
    3 - 1

    =
    20
    ×
    3 + 1
    3 - 13 + 1

    =
    20(√3 + 1)
    = 10(√3 + 1) metre
    2



  1. The value of (1 + tan2θ) (1 – sin2θ)









  1. View Hint View Answer Discuss in Forum

    Expression
    = (1 + tan2θ) .(1 – sin2θ)
    = sec2θ . cos2θ = 1
    [∵  sec2θ – tan2θ = 1 = sin2θ + cos2θ ; secθ . cosθ = 1]

    Correct Option: B

    Expression
    = (1 + tan2θ) .(1 – sin2θ)
    = sec2θ . cos2θ = 1
    [∵  sec2θ – tan2θ = 1 = sin2θ + cos2θ ; secθ . cosθ = 1]