Trigonometry


  1. If sin (3α – β) = 1 and cos (2α+β) = (1 / 2) , then the value of tan α is









  1. View Hint View Answer Discuss in Forum

    sin (3 α – β) = 1 = sin 90°
    ⇒ 3α – β = 90° ... (i)

    cos (2α + β) =
    1
    = cos 60°
    2

    ⇒ 2 α + β = 60° .... (ii)
    By adding both equations,
    3α + 2α = 90° + 60°
    ⇒ 5α = 150
    ⇒ α =
    150
    = 30°
    5

    ∴ tan α = tan 30° =
    1
    3

    Correct Option: B

    sin (3 α – β) = 1 = sin 90°
    ⇒ 3α – β = 90° ... (i)

    cos (2α + β) =
    1
    = cos 60°
    2

    ⇒ 2 α + β = 60° .... (ii)
    By adding both equations,
    3α + 2α = 90° + 60°
    ⇒ 5α = 150
    ⇒ α =
    150
    = 30°
    5

    ∴ tan α = tan 30° =
    1
    3


  1. If sin (60° – x) = cos (y + 60°), then the value of sin (x – y) is









  1. View Hint View Answer Discuss in Forum

    sin (60° – x) = cos (y + 60°)
    ⇒ sin (60°–x) = sin (90°– y – 60°) [ ∵ sin (90° – θ) = cos θ)
    ⇒ 60° – x = 90° – y – 60° = 30° – y
    ⇒ x – y = 60° – 30°
    ⇒ x – y = 30°

    ∴ sin (x - y) = sin 30° =
    1
    2

    Correct Option: B

    sin (60° – x) = cos (y + 60°)
    ⇒ sin (60°–x) = sin (90°– y – 60°) [ ∵ sin (90° – θ) = cos θ)
    ⇒ 60° – x = 90° – y – 60° = 30° – y
    ⇒ x – y = 60° – 30°
    ⇒ x – y = 30°

    ∴ sin (x - y) = sin 30° =
    1
    2



  1. If x = a secθ, y = b tanθ, then
    -
    is









  1. View Hint View Answer Discuss in Forum

    x = a sec θ ⇒ =
    x
    = sec θ
    a

    and y = b sec θ ⇒ =
    y
    = tan θ
    b

    -
    = sec² θ – tan² θ = 1

    Correct Option: C

    x = a sec θ ⇒ =
    x
    = sec θ
    a

    and y = b sec θ ⇒ =
    y
    = tan θ
    b

    -
    = sec² θ – tan² θ = 1


  1. a, b, c are the lengths of three sides of a triangle ABC. If a, b, c are related by the relation a² + b² + c² = ab + bc + ca, then the value of sin²A + sin²B + sin²C is









  1. View Hint View Answer Discuss in Forum

    a² + b² + c² = ab + bc + ca
    ⇒ 2a² + 2b² + 2c² = 2ab + 2bc + 2ca
    ⇒ a² + b² + b² + c² + c² + a² – 2ab – 2bc – 2ca = 0
    ⇒ a² + b² – 2ab + b² + c² – 2bc + c² + a² – 2ca = 0
    ⇒ (a – b)² + (b – c)² + (c – a)² = 0
    ⇒ a – b = 0
    ⇒ a = b
    b – c = 0
    ⇒ b = c
    c – a = 0
    ⇒ c = a
    ∴ ∆ ABC is an equilateral triangle.
    ∴ ∠A = ∠B = ∠ C = 60°
    ∴ sin²A + sin²B + sin²C = 3 sin²A = 3 × sin² 60°

    =3 × 3²
    2

    =
    3 × 3
    =
    9
    44

    Correct Option: D

    a² + b² + c² = ab + bc + ca
    ⇒ 2a² + 2b² + 2c² = 2ab + 2bc + 2ca
    ⇒ a² + b² + b² + c² + c² + a² – 2ab – 2bc – 2ca = 0
    ⇒ a² + b² – 2ab + b² + c² – 2bc + c² + a² – 2ca = 0
    ⇒ (a – b)² + (b – c)² + (c – a)² = 0
    ⇒ a – b = 0
    ⇒ a = b
    b – c = 0
    ⇒ b = c
    c – a = 0
    ⇒ c = a
    ∴ ∆ ABC is an equilateral triangle.
    ∴ ∠A = ∠B = ∠ C = 60°
    ∴ sin²A + sin²B + sin²C = 3 sin²A = 3 × sin² 60°

    =3 × 3²
    2

    =
    3 × 3
    =
    9
    44



  1. If tan A = n tan B and sin A = m sin B, then the value of cos²A is









  1. View Hint View Answer Discuss in Forum

    tan A = n tan B

    ⇒ tan B =
    1
    tan A
    n

    ⇒ cot B =
    n
    tan A

    and, sin A = m sin B
    ⇒ sin B =
    1
    sinA
    m

    ⇒ cosec B =
    1
    m
    sin A

    ∵ cosec²B – cot²B = 1
    -
    = 1
    sin²Atan²A

    -
    n²cos²A
    = 1
    sin²Asin²A

    m² - n²cos²A
    = 1
    sin²A

    ⇒ m² – n² cos²A = sin²A
    ⇒ m² – n² cos²A = 1 – cos²A
    ⇒ m² –1 = n² cos²A – cos²A
    ⇒ m² – 1 = (n² – 1) cos²A
    ⇒ cos²A =
    m² - 1
    n² - 1

    Correct Option: D

    tan A = n tan B

    ⇒ tan B =
    1
    tan A
    n

    ⇒ cot B =
    n
    tan A

    and, sin A = m sin B
    ⇒ sin B =
    1
    sinA
    m

    ⇒ cosec B =
    1
    m
    sin A

    ∵ cosec²B – cot²B = 1
    -
    = 1
    sin²Atan²A

    -
    n²cos²A
    = 1
    sin²Asin²A

    m² - n²cos²A
    = 1
    sin²A

    ⇒ m² – n² cos²A = sin²A
    ⇒ m² – n² cos²A = 1 – cos²A
    ⇒ m² –1 = n² cos²A – cos²A
    ⇒ m² – 1 = (n² – 1) cos²A
    ⇒ cos²A =
    m² - 1
    n² - 1