Home » Aptitude » Trigonometry » Question
  1. a, b, c are the lengths of three sides of a triangle ABC. If a, b, c are related by the relation a² + b² + c² = ab + bc + ca, then the value of sin²A + sin²B + sin²C is
    1. 2
      4
    2. 3√3
      2
    3. 2
      2
    4. 9
      4
Correct Option: D

a² + b² + c² = ab + bc + ca
⇒ 2a² + 2b² + 2c² = 2ab + 2bc + 2ca
⇒ a² + b² + b² + c² + c² + a² – 2ab – 2bc – 2ca = 0
⇒ a² + b² – 2ab + b² + c² – 2bc + c² + a² – 2ca = 0
⇒ (a – b)² + (b – c)² + (c – a)² = 0
⇒ a – b = 0
⇒ a = b
b – c = 0
⇒ b = c
c – a = 0
⇒ c = a
∴ ∆ ABC is an equilateral triangle.
∴ ∠A = ∠B = ∠ C = 60°
∴ sin²A + sin²B + sin²C = 3 sin²A = 3 × sin² 60°

=3 × 3²
2

=
3 × 3
=
9
44



Your comments will be displayed only after manual approval.