Trigonometry


  1. If α + β = 90°, then the expression (tan α / tan β) + sin²α + sin²β is equal to :









  1. View Hint View Answer Discuss in Forum

    α + β = 90°
    ⇒ α = 90° – β
    ⇒ tanα = tan (90° – β) = cot β.
    sinα = sin (90° – β) = cosβ
    ∴ Expression

    =
    cot β
    + tan² β + sin² β
    tan β

    = cot² β + 1
    = cosec² β = cosec² (90° – α)
    = sec²α

    Correct Option: D

    α + β = 90°
    ⇒ α = 90° – β
    ⇒ tanα = tan (90° – β) = cot β.
    sinα = sin (90° – β) = cosβ
    ∴ Expression

    =
    cot β
    + tan² β + sin² β
    tan β

    = cot² β + 1
    = cosec² β = cosec² (90° – α)
    = sec²α


  1. Value of the expression :
    1 + 2sin 60° cos60°
    +
    1 - 2sin 60° cos60°
    is
    sin 60° + cos60°sin 60° - cos60°









  1. View Hint View Answer Discuss in Forum

    Expression

    2 + √3
    +
    2 - √3
    3
    + 1
    3
    - 1

    =
    (2 + √3)(√3 - 1) + (√3 + 1)(2 - √3)
    (√3 + 1)(√3 - 1)

    =
    2√3 - + 3 - √3 + 2√3 - + 2 - √3
    3 - 1

    =
    4√3
    - 2√3
    =
    2√3
    = √3
    22

    Correct Option: C

    Expression

    2 + √3
    +
    2 - √3
    3
    + 1
    3
    - 1

    =
    (2 + √3)(√3 - 1) + (√3 + 1)(2 - √3)
    (√3 + 1)(√3 - 1)

    =
    2√3 - + 3 - √3 + 2√3 - + 2 - √3
    3 - 1

    =
    4√3
    - 2√3
    =
    2√3
    = √3
    22



  1. If sin 2θ -
    3
    then the value of sin3θ is equal to (Take 0° ≤ θ ≤ 90° )
    2









  1. View Hint View Answer Discuss in Forum

    sin2θ =
    3
    = sin 60°
    2

    ⇒ 2θ = 60°
    ⇒ θ = 30°
    ∴ sin 3θ = sin 90° = 1

    Correct Option: B

    sin2θ =
    3
    = sin 60°
    2

    ⇒ 2θ = 60°
    ⇒ θ = 30°
    ∴ sin 3θ = sin 90° = 1


  1. If
    sin θ + cosθ
    = 3 then the value of sin4 q is :
    sin θ - cosθ











  1. View Hint View Answer Discuss in Forum

    sinθ + cosθ
    =
    3
    sinθ - cosθ1

    By componendo and dividendo
    sin θ + cos θ + sin θ – cosθ
    =
    3 + 1
    sin θ + cos θ - sin θ + cosθ3 - 1

    2 sinθ
    =
    4
    2 cosθ2

    ⇒ tanθ = 2
    ∴ cotθ =
    1
    2

    ∴ cosecθ = √1 + cot² θ

    ∴ sin θ =
    2
    5

    sin4θ =
    16
    25

    Correct Option: E

    sinθ + cosθ
    =
    3
    sinθ - cosθ1

    By componendo and dividendo
    sin θ + cos θ + sin θ – cosθ
    =
    3 + 1
    sin θ + cos θ - sin θ + cosθ3 - 1

    2 sinθ
    =
    4
    2 cosθ2

    ⇒ tanθ = 2
    ∴ cotθ =
    1
    2

    ∴ cosecθ = √1 + cot² θ

    ∴ sin θ =
    2
    5

    sin4θ =
    16
    25



  1. If cos A + sin A = √2 cos A then cos A – sin A is equal to : (where 0° < A < 90°)









  1. View Hint View Answer Discuss in Forum

    cosA + sinA = 2 cosA --- (i)
    cosA – sinA = x (let) --- (ii)
    On squaring both equation and adding
    cos²A + sin²A + 2 sinA . cosA + cos²A + sin²A – 2 sinA cosA = 2
    cos²A + x ²
    ⇒ 2 (cos²A + sin²A) = 2 cos²A + x 2
    ⇒ x² + 2 cos²A = 2
    ⇒ x² = 2 – 2 cos²A
    = 2 (1 – cos²A) = 2 sin²A
    ∴ x = √2 sin A

    Correct Option: A

    cosA + sinA = 2 cosA --- (i)
    cosA – sinA = x (let) --- (ii)
    On squaring both equation and adding
    cos²A + sin²A + 2 sinA . cosA + cos²A + sin²A – 2 sinA cosA = 2
    cos²A + x ²
    ⇒ 2 (cos²A + sin²A) = 2 cos²A + x 2
    ⇒ x² + 2 cos²A = 2
    ⇒ x² = 2 – 2 cos²A
    = 2 (1 – cos²A) = 2 sin²A
    ∴ x = √2 sin A