Trigonometry


  1. In a triangle ABC, ∠ABC = 75° and ∠ACB =
    πc
    . The circular measure of ∠BAC is
    4









  1. View Hint View Answer Discuss in Forum

    Using Rule 1,
    ∠ABC = 75°
    [∵ 180° = π radian or πc ]

    75° =
    π
    × 75 =
    5 π
    radian
    180 12

    ∴ ∠BAC = π -
    π
    -
    5 π
    4 12

    =
    12π - 3π - 5π
    -
    4 π
    12 12

    =
    π
    radian
    3

    Correct Option: B

    Using Rule 1,
    ∠ABC = 75°
    [∵ 180° = π radian or πc ]

    75° =
    π
    × 75 =
    5 π
    radian
    180 12

    ∴ ∠BAC = π -
    π
    -
    5 π
    4 12

    =
    12π - 3π - 5π
    -
    4 π
    12 12

    =
    π
    radian
    3


  1. In circular measure, the value of the angle 11°15' is









  1. View Hint View Answer Discuss in Forum

    Using Rule 1,
    11°15'

    = 11 ° +
    15°
    60

    = 11° +
    1
    =
    45°
    4 4

    [∵ 180° = π c]
    45°
    =
    π
    ×
    45
    =
    πc

    4180416

    Correct Option: A

    Using Rule 1,
    11°15'

    = 11 ° +
    15°
    60

    = 11° +
    1
    =
    45°
    4 4

    [∵ 180° = π c]
    45°
    =
    π
    ×
    45
    =
    πc

    4180416



  1. If 3 cosθ + 4 sinθ = 5, then tanθ = ?









  1. View Hint View Answer Discuss in Forum

    3 cosθ + 4 sinθ = 5
    Dividing by cosθ,
    3 + 4 tanθ = 5 secθ
    On squaring,
    9 + 16 tan²θ + 24 tanθ = 25 (1 + tan²θ)
    ⇒ 9 tan²θ – 24 tanθ + 16 = 0
    ⇒ (3 tanθ – 4)2 = 0
    ⇒ 3 tanθ = 4

    ⇒ tanθ =
    4
    3

    Correct Option: A

    3 cosθ + 4 sinθ = 5
    Dividing by cosθ,
    3 + 4 tanθ = 5 secθ
    On squaring,
    9 + 16 tan²θ + 24 tanθ = 25 (1 + tan²θ)
    ⇒ 9 tan²θ – 24 tanθ + 16 = 0
    ⇒ (3 tanθ – 4)2 = 0
    ⇒ 3 tanθ = 4

    ⇒ tanθ =
    4
    3


  1. Find the simplest numerical value of 3 (sin x – cos x)4 + 4 (sin6x + cos6x) + 6(sinx + cosx)²









  1. View Hint View Answer Discuss in Forum

    3(sin x – cos x)4
    = 3 (sin²x + cos²x – 2 sin x . cos x)²
    = 3 (1 – 2sinx. cosx)²
    = 3 (1 + 4 sin²x . cos²x – 4 sin x . cos x) 4 (sin6x + cos6x)
    = 4 [(sin²x + cos²x)³ – 3 sin²x.cos²x (sin²x + cos²x) [a³ + b³ = (a+b)³ – 3ab (a+b)]
    = 4 (1 – 3 sin²x . cos²x)
    = 6 (sin x + cos x)²
    = 6 (sin²x + cos²x+2 sin x. cos x)
    = 6 (1 + 2 sin x . cos x)
    ∴ Expression = 3 (1 + 4sin²x . cos²x – 4sin x . cos x) + 4 (1 – 3sin²x . cos²x) + 6 (1 + 2sinx . cos x)
    = 3 + 4 + 6 = 13

    Correct Option: D

    3(sin x – cos x)4
    = 3 (sin²x + cos²x – 2 sin x . cos x)²
    = 3 (1 – 2sinx. cosx)²
    = 3 (1 + 4 sin²x . cos²x – 4 sin x . cos x) 4 (sin6x + cos6x)
    = 4 [(sin²x + cos²x)³ – 3 sin²x.cos²x (sin²x + cos²x) [a³ + b³ = (a+b)³ – 3ab (a+b)]
    = 4 (1 – 3 sin²x . cos²x)
    = 6 (sin x + cos x)²
    = 6 (sin²x + cos²x+2 sin x. cos x)
    = 6 (1 + 2 sin x . cos x)
    ∴ Expression = 3 (1 + 4sin²x . cos²x – 4sin x . cos x) + 4 (1 – 3sin²x . cos²x) + 6 (1 + 2sinx . cos x)
    = 3 + 4 + 6 = 13



  1. A telegraph post is bent at a point above the ground due to starm. Its top just touches the ground at a distance of 10 √3 metre from its foot and makes an angle of 30° with the horizontal. Then height (in metres) of the telegraph post is









  1. View Hint View Answer Discuss in Forum


    AB = Telegraph post
    AC = CD = bent part
    BD = 10√3 metre
    In ∆BCD,

    tan 30° =
    BC
    BD

    1
    BC
    310√3

    ⇒ BC =
    1
    × 10√3
    3

    = 10 metre
    Again,
    sin 30° =
    BC
    CD

    1
    =
    10
    2CD

    ⇒ CD = 20 metre
    ∴ AB = BC + CD = (10 + 20) metre
    = 30 metre

    Correct Option: A


    AB = Telegraph post
    AC = CD = bent part
    BD = 10√3 metre
    In ∆BCD,

    tan 30° =
    BC
    BD

    1
    BC
    310√3

    ⇒ BC =
    1
    × 10√3
    3

    = 10 metre
    Again,
    sin 30° =
    BC
    CD

    1
    =
    10
    2CD

    ⇒ CD = 20 metre
    ∴ AB = BC + CD = (10 + 20) metre
    = 30 metre