- 
					 Find the simplest numerical value of 3 (sin x – cos x)4 + 4 (sin6x + cos6x) + 6(sinx + cosx)²
- 
                        -  12 
 
-  10 
 
-  21 
 
- 13
 
-  12 
Correct Option: D
3(sin x – cos x)4 
= 3 (sin²x + cos²x – 2 sin x . cos x)² 
= 3 (1 – 2sinx. cosx)² 
= 3 (1 + 4 sin²x . cos²x – 4 sin x . cos x) 4 (sin6x + cos6x) 
= 4 [(sin²x + cos²x)³ – 3 sin²x.cos²x (sin²x + cos²x) [a³ + b³ = (a+b)³ – 3ab (a+b)] 
= 4 (1 – 3 sin²x . cos²x) 
= 6 (sin x + cos x)² 
= 6 (sin²x + cos²x+2 sin x. cos x) 
= 6 (1 + 2 sin x . cos x) 
∴ Expression = 3 (1 + 4sin²x . cos²x – 4sin x . cos x) + 4 (1 – 3sin²x . cos²x) + 6 (1 + 2sinx . cos x) 
= 3 + 4 + 6 = 13 
 
	