Trigonometry
-  A man standing on the bank of a river observes that the angle of elevation of the top of a tree just on the opposite bank is 60°. But angle of elevation is 30° from a point which is at a distance 20 √3 ft away from the bank. Then the height of the tree is :
- 
                        View Hint View Answer Discuss in Forum  
 Suppose, height of tree = AB = h foot
 BC = width of river = x foot
 CD = 20 3 foot
 ∠ACB = 60° and ∠ADB = 30°
 In ∆ABC,tan60° = AB BC ⇒ √3 = h x 
 ⇒ h = √3x foot ...............(i)
 In ∆ABD,tan30° = AB BD = 1 = h √3 x + 20√3 
 ⇒ √3h x = + 20 √3⇒ √3h = h + 20√3 √3 
 ⇒ 3h = h + 20 √3 × √3
 ⇒ 2h = 60⇒ h = 60 = 30 feet 2 
 Correct Option: C 
 Suppose, height of tree = AB = h foot
 BC = width of river = x foot
 CD = 20 3 foot
 ∠ACB = 60° and ∠ADB = 30°
 In ∆ABC,tan60° = AB BC ⇒ √3 = h x 
 ⇒ h = √3x foot ...............(i)
 In ∆ABD,tan30° = AB BD = 1 = h √3 x + 20√3 
 ⇒ √3h x = + 20 √3⇒ √3h = h + 20√3 √3 
 ⇒ 3h = h + 20 √3 × √3
 ⇒ 2h = 60⇒ h = 60 = 30 feet 2 
 
-  The length of shadow of a tower is √3 times that of its length. The angle of elevation of the sun is :
- 
                        View Hint View Answer Discuss in Forum  
 Let the height of tower be x units.
 ∴ Length of shadow = √3x units In ∆ABC,∴ tanθ = AB = x = 1 BC √3 x √3 
 ⇒ tanθ = tan30°
 ⇒ θ = 30°Correct Option: B 
 Let the height of tower be x units.
 ∴ Length of shadow = √3x units In ∆ABC,∴ tanθ = AB = x = 1 BC √3 x √3 
 ⇒ tanθ = tan30°
 ⇒ θ = 30°
-  From the top of a 20 metre high building, the angle of elevation of the top of a tower is 60° and the angle of depression of its foot is at 45°, then the height of the tower is (√3 = 1.732)
- 
                        View Hint View Answer Discuss in Forum  
 AB = Height of building = 20 metre
 CD = Height of tower = h metre (let)
 ∠ACB = ∠EAC = 45°
 ∠DAE = 60°
 BC = AE = x metre
 In ∆ABC,tan 45° = AB BC ⇒ 1 = 20 x 
 ⇒ x = 20 metre
 In ∆ADE,tan 60° = DE ⇒ √3 = h - 20 AE 20 
 &RArr; h – 20 = 20√3
 ⇒ h = 20√3 + 20
 = 20(√3 + 1)metre
 = 20 (1.732 + 1) metre
 = (20 × 2.732) metre
 = 54.64 metre
 Correct Option: C 
 AB = Height of building = 20 metre
 CD = Height of tower = h metre (let)
 ∠ACB = ∠EAC = 45°
 ∠DAE = 60°
 BC = AE = x metre
 In ∆ABC,tan 45° = AB BC ⇒ 1 = 20 x 
 ⇒ x = 20 metre
 In ∆ADE,tan 60° = DE ⇒ √3 = h - 20 AE 20 
 &RArr; h – 20 = 20√3
 ⇒ h = 20√3 + 20
 = 20(√3 + 1)metre
 = 20 (1.732 + 1) metre
 = (20 × 2.732) metre
 = 54.64 metre
 
-  Two persons are on either side of a temple, 75 m high, observe the angle of elevation of the top of the temple to be 30° and 60° respectively. The distance between the persons is :
- 
                        View Hint View Answer Discuss in Forum  
 AD = Height of temple = 75 metre
 B and C ⇒ Positions of men
 ∠ABD = 30°; ∠ACD = 60°
 In ∆ABD,tan 30° = AD BD ⇒ 1 = 75 √3 BD 
 ⇒ BD = 75 √3 metre
 In ∆ACD,tan 60° = AD DC ⇒ √3 = 75 DC ⇒ DC = 75 = 25√3 metre √3 
 ∴ BC = BD + DC
 = 75 √3 + 25 √3
 = 100 √3 metre
 = (100 × 1.732) metre
 = 173.2 metreCorrect Option: A 
 AD = Height of temple = 75 metre
 B and C ⇒ Positions of men
 ∠ABD = 30°; ∠ACD = 60°
 In ∆ABD,tan 30° = AD BD ⇒ 1 = 75 √3 BD 
 ⇒ BD = 75 √3 metre
 In ∆ACD,tan 60° = AD DC ⇒ √3 = 75 DC ⇒ DC = 75 = 25√3 metre √3 
 ∴ BC = BD + DC
 = 75 √3 + 25 √3
 = 100 √3 metre
 = (100 × 1.732) metre
 = 173.2 metre
-  The angles of elevation of an aeroplane flying vertically above the ground, as observed from the two consecutive stones, 1 km apart; are 45° and 60° aeroplane from the ground is :
- 
                        View Hint View Answer Discuss in Forum  
 Two consecutive kilometre stones ⇒ C and D
 ∠ADB = 45°; ∠ACB = 60°
 CD = 1 km.
 AB = height of plane = h metre
 BC = x metre (let)
 In ∆ABC,tan60° = AB BC ⇒ √3 = h x 
 ⇒ h = √3x metre ..... (i)
 In ∆ABDtan45° = AB BD ⇒ 1 = h x + 1 
 ⇒ h = x + 1⇒ h = h + 1 √3 
 [From equation (i)]⇒ h - h = 1 √3 ⇒ √3h - h = 1 √3 
 ⇒ (√3 - 1)h = √3⇒ h = √3 √3 - 1 ⇒ h = √3(√3 + 1) (√3 - 1)(√3 + 1) ⇒ h = √3(√3 + 1) 2 h = (3 + √3) metre 2 
 Correct Option: D 
 Two consecutive kilometre stones ⇒ C and D
 ∠ADB = 45°; ∠ACB = 60°
 CD = 1 km.
 AB = height of plane = h metre
 BC = x metre (let)
 In ∆ABC,tan60° = AB BC ⇒ √3 = h x 
 ⇒ h = √3x metre ..... (i)
 In ∆ABDtan45° = AB BD ⇒ 1 = h x + 1 
 ⇒ h = x + 1⇒ h = h + 1 √3 
 [From equation (i)]⇒ h - h = 1 √3 ⇒ √3h - h = 1 √3 
 ⇒ (√3 - 1)h = √3⇒ h = √3 √3 - 1 ⇒ h = √3(√3 + 1) (√3 - 1)(√3 + 1) ⇒ h = √3(√3 + 1) 2 h = (3 + √3) metre 2 
 
 
	