Trigonometry


  1. A man standing on the bank of a river observes that the angle of elevation of the top of a tree just on the opposite bank is 60°. But angle of elevation is 30° from a point which is at a distance 20 √3 ft away from the bank. Then the height of the tree is :









  1. View Hint View Answer Discuss in Forum


    Suppose, height of tree = AB = h foot
    BC = width of river = x foot
    CD = 20 3 foot
    ∠ACB = 60° and ∠ADB = 30°
    In ∆ABC,

    tan60° =
    AB
    BC

    ⇒ √3 =
    h
    x

    ⇒ h = √3x foot ...............(i)
    In ∆ABD,
    tan30° =
    AB
    BD

    =
    1
    =
    h
    3x + 20√3

    ⇒ √3h x = + 20 √3
    ⇒ √3h =
    h
    + 20√3
    3

    ⇒ 3h = h + 20 √3 × √3
    ⇒ 2h = 60
    ⇒ h =
    60
    = 30 feet
    2

    Correct Option: C


    Suppose, height of tree = AB = h foot
    BC = width of river = x foot
    CD = 20 3 foot
    ∠ACB = 60° and ∠ADB = 30°
    In ∆ABC,

    tan60° =
    AB
    BC

    ⇒ √3 =
    h
    x

    ⇒ h = √3x foot ...............(i)
    In ∆ABD,
    tan30° =
    AB
    BD

    =
    1
    =
    h
    3x + 20√3

    ⇒ √3h x = + 20 √3
    ⇒ √3h =
    h
    + 20√3
    3

    ⇒ 3h = h + 20 √3 × √3
    ⇒ 2h = 60
    ⇒ h =
    60
    = 30 feet
    2


  1. The length of shadow of a tower is √3 times that of its length. The angle of elevation of the sun is :









  1. View Hint View Answer Discuss in Forum


    Let the height of tower be x units.
    ∴ Length of shadow = √3x units In ∆ABC,

    ∴ tanθ =
    AB
    =
    x
    =
    1
    BC3 x3

    ⇒ tanθ = tan30°
    ⇒ θ = 30°

    Correct Option: B


    Let the height of tower be x units.
    ∴ Length of shadow = √3x units In ∆ABC,

    ∴ tanθ =
    AB
    =
    x
    =
    1
    BC3 x3

    ⇒ tanθ = tan30°
    ⇒ θ = 30°



  1. From the top of a 20 metre high building, the angle of elevation of the top of a tower is 60° and the angle of depression of its foot is at 45°, then the height of the tower is (√3 = 1.732)









  1. View Hint View Answer Discuss in Forum


    AB = Height of building = 20 metre
    CD = Height of tower = h metre (let)
    ∠ACB = ∠EAC = 45°
    ∠DAE = 60°
    BC = AE = x metre
    In ∆ABC,

    tan 45° =
    AB
    BC

    ⇒ 1 =
    20
    x

    ⇒ x = 20 metre
    In ∆ADE,
    tan 60° =
    DE
    ⇒ √3 =
    h - 20
    AE20

    &RArr; h – 20 = 20√3
    ⇒ h = 20√3 + 20
    = 20(√3 + 1)metre
    = 20 (1.732 + 1) metre
    = (20 × 2.732) metre
    = 54.64 metre

    Correct Option: C


    AB = Height of building = 20 metre
    CD = Height of tower = h metre (let)
    ∠ACB = ∠EAC = 45°
    ∠DAE = 60°
    BC = AE = x metre
    In ∆ABC,

    tan 45° =
    AB
    BC

    ⇒ 1 =
    20
    x

    ⇒ x = 20 metre
    In ∆ADE,
    tan 60° =
    DE
    ⇒ √3 =
    h - 20
    AE20

    &RArr; h – 20 = 20√3
    ⇒ h = 20√3 + 20
    = 20(√3 + 1)metre
    = 20 (1.732 + 1) metre
    = (20 × 2.732) metre
    = 54.64 metre


  1. Two persons are on either side of a temple, 75 m high, observe the angle of elevation of the top of the temple to be 30° and 60° respectively. The distance between the persons is :









  1. View Hint View Answer Discuss in Forum


    AD = Height of temple = 75 metre
    B and C ⇒ Positions of men
    ∠ABD = 30°; ∠ACD = 60°
    In ∆ABD,

    tan 30° =
    AD
    BD

    1
    =
    75
    3BD

    ⇒ BD = 75 √3 metre
    In ∆ACD,
    tan 60° =
    AD
    DC

    ⇒ √3 =
    75
    DC

    ⇒ DC =
    75
    = 25√3 metre
    3

    ∴ BC = BD + DC
    = 75 √3 + 25 √3
    = 100 √3 metre
    = (100 × 1.732) metre
    = 173.2 metre

    Correct Option: A


    AD = Height of temple = 75 metre
    B and C ⇒ Positions of men
    ∠ABD = 30°; ∠ACD = 60°
    In ∆ABD,

    tan 30° =
    AD
    BD

    1
    =
    75
    3BD

    ⇒ BD = 75 √3 metre
    In ∆ACD,
    tan 60° =
    AD
    DC

    ⇒ √3 =
    75
    DC

    ⇒ DC =
    75
    = 25√3 metre
    3

    ∴ BC = BD + DC
    = 75 √3 + 25 √3
    = 100 √3 metre
    = (100 × 1.732) metre
    = 173.2 metre



  1. The angles of elevation of an aeroplane flying vertically above the ground, as observed from the two consecutive stones, 1 km apart; are 45° and 60° aeroplane from the ground is :









  1. View Hint View Answer Discuss in Forum


    Two consecutive kilometre stones ⇒ C and D
    ∠ADB = 45°; ∠ACB = 60°
    CD = 1 km.
    AB = height of plane = h metre
    BC = x metre (let)
    In ∆ABC,

    tan60° =
    AB
    BC

    ⇒ √3 =
    h
    x

    ⇒ h = √3x metre ..... (i)
    In ∆ABD
    tan45° =
    AB
    BD

    ⇒ 1 =
    h
    x + 1

    ⇒ h = x + 1
    ⇒ h =
    h
    + 1
    3

    [From equation (i)]
    ⇒ h -
    h
    = 1
    3

    3h - h
    = 1
    3

    ⇒ (√3 - 1)h = √3
    ⇒ h =
    3
    3 - 1

    ⇒ h =
    3(√3 + 1)
    (√3 - 1)(√3 + 1)

    ⇒ h =
    3(√3 + 1)
    2

    h =
    (3 + √3)
    metre
    2

    Correct Option: D


    Two consecutive kilometre stones ⇒ C and D
    ∠ADB = 45°; ∠ACB = 60°
    CD = 1 km.
    AB = height of plane = h metre
    BC = x metre (let)
    In ∆ABC,

    tan60° =
    AB
    BC

    ⇒ √3 =
    h
    x

    ⇒ h = √3x metre ..... (i)
    In ∆ABD
    tan45° =
    AB
    BD

    ⇒ 1 =
    h
    x + 1

    ⇒ h = x + 1
    ⇒ h =
    h
    + 1
    3

    [From equation (i)]
    ⇒ h -
    h
    = 1
    3

    3h - h
    = 1
    3

    ⇒ (√3 - 1)h = √3
    ⇒ h =
    3
    3 - 1

    ⇒ h =
    3(√3 + 1)
    (√3 - 1)(√3 + 1)

    ⇒ h =
    3(√3 + 1)
    2

    h =
    (3 + √3)
    metre
    2