- 
					 The angles of elevation of an aeroplane flying vertically above the ground, as observed from the two consecutive stones, 1 km apart; are 45° and 60° aeroplane from the ground is :
- 
                        - (√3 + 1) km.
- (√3 + 3) km.
-  1 (√3 + 1) km. 2 
-  1 (√3 + 3) km. 2 
 
Correct Option: D

Two consecutive kilometre stones ⇒ C and D
∠ADB = 45°; ∠ACB = 60°
CD = 1 km.
AB = height of plane = h metre
BC = x metre (let)
In ∆ABC,
| tan60° = | ||
| BC | 
| ⇒ √3 = | ||
| x | 
⇒ h = √3x metre ..... (i)
In ∆ABD
| tan45° = | ||
| BD | 
| ⇒ 1 = | ||
| x + 1 | 
⇒ h = x + 1
| ⇒ h = | + 1 | |
| √3 | 
[From equation (i)]
| ⇒ h - | = 1 | |
| √3 | 
| ⇒ | = 1 | |
| √3 | 
⇒ (√3 - 1)h = √3
| ⇒ h = | ||
| √3 - 1 | 
| ⇒ h = | ||
| (√3 - 1)(√3 + 1) | 
| ⇒ h = | ||
| 2 | 
| h = | metre | |
| 2 | 
 
	