Home » Aptitude » Trigonometry » Question
  1. From the top of a 20 metre high building, the angle of elevation of the top of a tower is 60° and the angle of depression of its foot is at 45°, then the height of the tower is (√3 = 1.732)
    1. 45.46 metre
    2. 45.64 metre
    3. 54.64 metre
    4. 54.46 metre
Correct Option: C


AB = Height of building = 20 metre
CD = Height of tower = h metre (let)
∠ACB = ∠EAC = 45°
∠DAE = 60°
BC = AE = x metre
In ∆ABC,

tan 45° =
AB
BC

⇒ 1 =
20
x

⇒ x = 20 metre
In ∆ADE,
tan 60° =
DE
⇒ √3 =
h - 20
AE20

&RArr; h – 20 = 20√3
⇒ h = 20√3 + 20
= 20(√3 + 1)metre
= 20 (1.732 + 1) metre
= (20 × 2.732) metre
= 54.64 metre



Your comments will be displayed only after manual approval.