Trigonometry
-  If sin θ + cos θ = √2 sin (90° – θ) then cot θ is equal to :
- 
                        View Hint View Answer Discuss in Forum sinθ + cosθ = √2 sin (90° – θ) 
 ⇒ sinθ + cosq = √2 cosθ
 ⇒ √2 cosθ – cosθ = sinθ
 ⇒ cosθ (√2) - 1 = sinθ⇒ cos θ = 1 sin θ √2 - 1 ⇒ cot θ 1 × √2 + 1 √2 - 1 √2 + 1 = √2 + 1 = √2 + 1 2 - 1 
 Correct Option: Dsinθ + cosθ = √2 sin (90° – θ) 
 ⇒ sinθ + cosq = √2 cosθ
 ⇒ √2 cosθ – cosθ = sinθ
 ⇒ cosθ (√2) - 1 = sinθ⇒ cos θ = 1 sin θ √2 - 1 ⇒ cot θ 1 × √2 + 1 √2 - 1 √2 + 1 = √2 + 1 = √2 + 1 2 - 1 
 
-  The value of the following is :(tan 20°)² + (cot 20°)² + 2tan 15°. tan 45°. tan 75° (cosec 70°)² (sec 70°)² 
- 
                        View Hint View Answer Discuss in Forum tan 20° = tan (90° – 70°) = cot 70° 
 ∴ cot 20° = tan 70°
 tan 15° = tan (90° – 75°) = cot 75°
 ∴ Expression = cot² 70°. sin²70° + tan²70°. cos²70° + 2 cot 75°. tan 75°. tan 45°= cos² 70° . sin² 70° + sin² 70° sin² 70° cos² 70° 
 cos² 70° + 2 × 1 × 1
 = cos²70° + sin²70° + 2 = 1 + 2 = 3
 [∵ sinθ . cosecθ = 1 ; cosθ. secθ = 1; tanθ . cotθ = 1]Correct Option: Ctan 20° = tan (90° – 70°) = cot 70° 
 ∴ cot 20° = tan 70°
 tan 15° = tan (90° – 75°) = cot 75°
 ∴ Expression = cot² 70°. sin²70° + tan²70°. cos²70° + 2 cot 75°. tan 75°. tan 45°= cos² 70° . sin² 70° + sin² 70° sin² 70° cos² 70° 
 cos² 70° + 2 × 1 × 1
 = cos²70° + sin²70° + 2 = 1 + 2 = 3
 [∵ sinθ . cosecθ = 1 ; cosθ. secθ = 1; tanθ . cotθ = 1]
-  The value of the following is sin 47°  +  cos 43°  - 4cos²45° cos 43° sin 47° 
- 
                        View Hint View Answer Discuss in Forum sin47° = sin(90° – 43°) = cos43°  = 1 + 1 – 4 × 1 = 2 – 2 = 0 2 
 Correct Option: Bsin47° = sin(90° – 43°) = cos43°  = 1 + 1 – 4 × 1 = 2 – 2 = 0 2 
 
-  If 0° < θ < 90° and cosecθ = cot²θ, then the value of the expression cosec4θ – 2cosec4θ + cot²θ is equal to:
- 
                        View Hint View Answer Discuss in Forum cosecθ = cot²θ 
 ⇒ cosecθ = cosec²θ – 1
 ⇒ cosec²θ – cosecθ = 1 .....(i)
 Expression
 = cosec4θ – 2cosec3θ + cot²θ
 = cosec4θ – cosec3θ – cosec3θ + cosecθ
 = cosec²θ (cosec²θ – cosecθ) – cosecθ (cosec²θ–1)
 = cosec²θ – cosec²θ = 0Correct Option: Bcosecθ = cot²θ 
 ⇒ cosecθ = cosec²θ – 1
 ⇒ cosec²θ – cosecθ = 1 .....(i)
 Expression
 = cosec4θ – 2cosec3θ + cot²θ
 = cosec4θ – cosec3θ – cosec3θ + cosecθ
 = cosec²θ (cosec²θ – cosecθ) – cosecθ (cosec²θ–1)
 = cosec²θ – cosec²θ = 0
-  If 4sin²θ – 1 = 0 and angle θ is less than 90°, the value of cos²θ + tan²θ is : (Take 0° < θ < 90°)
- 
                        View Hint View Answer Discuss in Forum 4 sin²θ – 1 = 0 
 ⇒ 4 sin²θ = 1⇒ sin²θ = 1 4 ⇒ sinθ = 1 (∵ θ < 90°) 2 
 ∴sinθ = sin30°
 ⇒ θ = 30°
 ∴ cos²θ + tan²θ = cos²30° + tan²30° = 9 + 4 = 13 12 12 
 Correct Option: B4 sin²θ – 1 = 0 
 ⇒ 4 sin²θ = 1⇒ sin²θ = 1 4 ⇒ sinθ = 1 (∵ θ < 90°) 2 
 ∴sinθ = sin30°
 ⇒ θ = 30°
 ∴ cos²θ + tan²θ = cos²30° + tan²30° = 9 + 4 = 13 12 12 
 
 
	