Trigonometry


  1. If 5 cos θ + 12 sin θ = 13, 0° < θ < 90°, then the value of sin q is









  1. View Hint View Answer Discuss in Forum

    5 cosθ + 12 sinθ = 13

    5
    cosθ +
    12
    sin θ = 1
    1313

    ∵ sin²θ + cos²θ = 1
    ∴ sinθ =
    12
    . cosθ =
    5
    1313

    Correct Option: D

    5 cosθ + 12 sinθ = 13

    5
    cosθ +
    12
    sin θ = 1
    1313

    ∵ sin²θ + cos²θ = 1
    ∴ sinθ =
    12
    . cosθ =
    5
    1313


  1. If 7sin²θ + 3cos²θ = 4, then the value of tan θ is (θ is acute)









  1. View Hint View Answer Discuss in Forum

    7
    sin²θ
    +
    3cos²θ
    =
    4
    cos²θcos²θcos²θ

    ⇒ 7 tan²θ + 3 = 4 sec²θ
    ⇒ 7 tan²θ + 3 = 4 (1 + tan²θ)
    ⇒ 7 tan²θ + 3 = 4 + 4 tan²θ
    ⇒ 7 tan²θ – 4 tan²θ = 4 – 3
    ⇒ 4 tan²θ = 1 ⇒ tan²θ =
    1
    3

    ⇒ tanθ =
    1
    3

    Correct Option: A

    7
    sin²θ
    +
    3cos²θ
    =
    4
    cos²θcos²θcos²θ

    ⇒ 7 tan²θ + 3 = 4 sec²θ
    ⇒ 7 tan²θ + 3 = 4 (1 + tan²θ)
    ⇒ 7 tan²θ + 3 = 4 + 4 tan²θ
    ⇒ 7 tan²θ – 4 tan²θ = 4 – 3
    ⇒ 4 tan²θ = 1 ⇒ tan²θ =
    1
    3

    ⇒ tanθ =
    1
    3



  1. The value of (cosec a – sin a) (sec a – cos a) (tan a + cot a) is









  1. View Hint View Answer Discuss in Forum

    Expression
    = (cosec a – sin a) (sec a – cos a) (tan a + cot a)

    sin²a + cos²a
    cosa . sina

    =
    cos²a
    ×
    sin²a
    ×
    1

    sinacosacosa.sina

    = 1

    Correct Option: A

    Expression
    = (cosec a – sin a) (sec a – cos a) (tan a + cot a)

    sin²a + cos²a
    cosa . sina

    =
    cos²a
    ×
    sin²a
    ×
    1

    sinacosacosa.sina

    = 1


  1. If sin A + sin²A = 1, then the value of cos²A + cos4A is









  1. View Hint View Answer Discuss in Forum

    sin A + sin²A = 1
    ⇒ sin A = 1 – sin²A = cos²A
    ∴ cos²A + cos4A
    = cos²A + (cos²A)2
    = cos²A + sin²A = 1

    Correct Option: D

    sin A + sin²A = 1
    ⇒ sin A = 1 – sin²A = cos²A
    ∴ cos²A + cos4A
    = cos²A + (cos²A)2
    = cos²A + sin²A = 1



  1. If cos x + cos²x = 1, then sin8x + 2 sin6x + sin4x is equal to









  1. View Hint View Answer Discuss in Forum

    cos x + cos² x = 1
    ⇒ cos x = 1 – cos² x
    = sin² x ....... (i)
    ∴ sin8 x + 2 sin6 x + sin4 x
    = (sin4 x + sin2 x)²
    = ((cos x)² + sin² x)²
    = (cos²x + sin2 x)²
    = 1

    Correct Option: D

    cos x + cos² x = 1
    ⇒ cos x = 1 – cos² x
    = sin² x ....... (i)
    ∴ sin8 x + 2 sin6 x + sin4 x
    = (sin4 x + sin2 x)²
    = ((cos x)² + sin² x)²
    = (cos²x + sin2 x)²
    = 1