Trigonometry
- If 5 cos θ + 12 sin θ = 13, 0° < θ < 90°, then the value of sin q is
-
View Hint View Answer Discuss in Forum
5 cosθ + 12 sinθ = 13
⇒ 5 cosθ + 12 sin θ = 1 13 13
∵ sin²θ + cos²θ = 1∴ sinθ = 12 . cosθ = 5 13 13
Correct Option: D
5 cosθ + 12 sinθ = 13
⇒ 5 cosθ + 12 sin θ = 1 13 13
∵ sin²θ + cos²θ = 1∴ sinθ = 12 . cosθ = 5 13 13
- If 7sin²θ + 3cos²θ = 4, then the value of tan θ is (θ is acute)
-
View Hint View Answer Discuss in Forum
7 sin²θ + 3cos²θ = 4 cos²θ cos²θ cos²θ
⇒ 7 tan²θ + 3 = 4 sec²θ
⇒ 7 tan²θ + 3 = 4 (1 + tan²θ)
⇒ 7 tan²θ + 3 = 4 + 4 tan²θ
⇒ 7 tan²θ – 4 tan²θ = 4 – 3⇒ 4 tan²θ = 1 ⇒ tan²θ = 1 3 ⇒ tanθ = 1 √3 Correct Option: A
7 sin²θ + 3cos²θ = 4 cos²θ cos²θ cos²θ
⇒ 7 tan²θ + 3 = 4 sec²θ
⇒ 7 tan²θ + 3 = 4 (1 + tan²θ)
⇒ 7 tan²θ + 3 = 4 + 4 tan²θ
⇒ 7 tan²θ – 4 tan²θ = 4 – 3⇒ 4 tan²θ = 1 ⇒ tan²θ = 1 3 ⇒ tanθ = 1 √3
- The value of (cosec a – sin a) (sec a – cos a) (tan a + cot a) is
-
View Hint View Answer Discuss in Forum
Expression
= (cosec a – sin a) (sec a – cos a) (tan a + cot a)sin²a + cos²a cosa . sina = cos²a × sin²a × 1 sina cosa cosa.sina
= 1Correct Option: A
Expression
= (cosec a – sin a) (sec a – cos a) (tan a + cot a)sin²a + cos²a cosa . sina = cos²a × sin²a × 1 sina cosa cosa.sina
= 1
- If sin A + sin²A = 1, then the value of cos²A + cos4A is
-
View Hint View Answer Discuss in Forum
sin A + sin²A = 1
⇒ sin A = 1 – sin²A = cos²A
∴ cos²A + cos4A
= cos²A + (cos²A)2
= cos²A + sin²A = 1Correct Option: D
sin A + sin²A = 1
⇒ sin A = 1 – sin²A = cos²A
∴ cos²A + cos4A
= cos²A + (cos²A)2
= cos²A + sin²A = 1
- If cos x + cos²x = 1, then sin8x + 2 sin6x + sin4x is equal to
-
View Hint View Answer Discuss in Forum
cos x + cos² x = 1
⇒ cos x = 1 – cos² x
= sin² x ....... (i)
∴ sin8 x + 2 sin6 x + sin4 x
= (sin4 x + sin2 x)²
= ((cos x)² + sin² x)²
= (cos²x + sin2 x)²
= 1Correct Option: D
cos x + cos² x = 1
⇒ cos x = 1 – cos² x
= sin² x ....... (i)
∴ sin8 x + 2 sin6 x + sin4 x
= (sin4 x + sin2 x)²
= ((cos x)² + sin² x)²
= (cos²x + sin2 x)²
= 1