Trigonometry


  1. ABC is a right angled triangle, right angled at B and ∠A = 60° and AB = 20 cm, then the ratio of sides BC and CA is









  1. View Hint View Answer Discuss in Forum


    ∠B = 90°
    ∠A = 60°
    ∠C = 180° – 90° – 60° = 30°

    cosC =
    BC
    CA

    ⇒cos30° =
    BC
    CA

    3
    =
    BC
    = √3 : 2
    2CA

    Correct Option: D


    ∠B = 90°
    ∠A = 60°
    ∠C = 180° – 90° – 60° = 30°

    cosC =
    BC
    CA

    ⇒cos30° =
    BC
    CA

    3
    =
    BC
    = √3 : 2
    2CA


  1. If tan 2θ . tan 3θ = 1, where 0° < θ < 90° then the value of θ is









  1. View Hint View Answer Discuss in Forum

    tan2θ . tan3θ = 1

    ⇒ tan3θ =
    1
    = cot2θ
    tan2θ

    ⇒ tan3θ = tan (90° – 2θ)
    ⇒ 3θ = 90° – 2θ
    ⇒ 3θ + 2θ = 5θ = 90°
    ⇒ θ =
    90°
    = 18°
    5

    Correct Option: B

    tan2θ . tan3θ = 1

    ⇒ tan3θ =
    1
    = cot2θ
    tan2θ

    ⇒ tan3θ = tan (90° – 2θ)
    ⇒ 3θ = 90° – 2θ
    ⇒ 3θ + 2θ = 5θ = 90°
    ⇒ θ =
    90°
    = 18°
    5



  1. If cos²α – sin²α = tan²β, then the value of cos²β – sin²β is









  1. View Hint View Answer Discuss in Forum

    cos²α – sin²α = tan²β
    ⇒ cos²α – (1 – cos²α) = tan²β
    ⇒ 2cos²α – 1 = tan²β
    ⇒ 2cos²α = 1 + tan²β = sec²β

    ⇒ cos²β =
    1
    2cos²α

    sin²β = 1 – cos²β
    = 1 -
    1
    2cos²α

    =
    2cos²α - 1
    2cos²α

    ∴ cos²β – sin²β
    =
    1
    -
    2cos²α - 1
    2cos²α2cos²α

    =
    1 - 2cos²α + 1
    2cos²α

    =
    2(1 - cos²α)
    =
    sin²α
    2cos²αcos²α

    = tan²α
    Note : It is an identity.

    Correct Option: C

    cos²α – sin²α = tan²β
    ⇒ cos²α – (1 – cos²α) = tan²β
    ⇒ 2cos²α – 1 = tan²β
    ⇒ 2cos²α = 1 + tan²β = sec²β

    ⇒ cos²β =
    1
    2cos²α

    sin²β = 1 – cos²β
    = 1 -
    1
    2cos²α

    =
    2cos²α - 1
    2cos²α

    ∴ cos²β – sin²β
    =
    1
    -
    2cos²α - 1
    2cos²α2cos²α

    =
    1 - 2cos²α + 1
    2cos²α

    =
    2(1 - cos²α)
    =
    sin²α
    2cos²αcos²α

    = tan²α
    Note : It is an identity.


  1. If tan (A + B) = √AAAA and tan (A – B) = (1 / √3) , ∠A + ∠B) < 90°, ∠A ≥ B, then ∠A is









  1. View Hint View Answer Discuss in Forum

    tan(A + B) = √3 = tan60°
    ⇒ A + B = 60° ...(i)

    tan(A – B) =
    1
    = tan30°
    30

    ⇒ A – B = 30° ...(ii)
    ∴ A + B + A – B = 60° + 30°
    ⇒ 2A = 90°
    ⇒ A =
    90°
    = 45°
    2


    Correct Option: C

    tan(A + B) = √3 = tan60°
    ⇒ A + B = 60° ...(i)

    tan(A – B) =
    1
    = tan30°
    30

    ⇒ A – B = 30° ...(ii)
    ∴ A + B + A – B = 60° + 30°
    ⇒ 2A = 90°
    ⇒ A =
    90°
    = 45°
    2




  1. The value of
    sin θ - 2sin3 θ
    is
    2 cos3 θ - cosθ









  1. View Hint View Answer Discuss in Forum

    Expression

    =
    sinθ - 2sin3θ
    2cos3θ -cosθ

    =
    sinθ ( 1 - 2sin2θ)
    cosθ (2cos2θ - 1)

    =
    sinθ
    .
    (1 - 2 (1 - cos²θ)))
    cos θ(2cos²θ - 1)

    = tan θ
    (1 + 2 cos² θ - 2)
    (2 cos² θ - 1)

    = tan θ.
    2 cos²θ - 1
    = tan θ
    2 cos²θ - 1

    Correct Option: C

    Expression

    =
    sinθ - 2sin3θ
    2cos3θ -cosθ

    =
    sinθ ( 1 - 2sin2θ)
    cosθ (2cos2θ - 1)

    =
    sinθ
    .
    (1 - 2 (1 - cos²θ)))
    cos θ(2cos²θ - 1)

    = tan θ
    (1 + 2 cos² θ - 2)
    (2 cos² θ - 1)

    = tan θ.
    2 cos²θ - 1
    = tan θ
    2 cos²θ - 1