Home » Aptitude » Trigonometry » Question
  1. If cos²α – sin²α = tan²β, then the value of cos²β – sin²β is
    1. cot²α
    2. cot²α
    3. tan²α
    4. tan²α
Correct Option: C

cos²α – sin²α = tan²β
⇒ cos²α – (1 – cos²α) = tan²β
⇒ 2cos²α – 1 = tan²β
⇒ 2cos²α = 1 + tan²β = sec²β

⇒ cos²β =
1
2cos²α

sin²β = 1 – cos²β
= 1 -
1
2cos²α

=
2cos²α - 1
2cos²α

∴ cos²β – sin²β
=
1
-
2cos²α - 1
2cos²α2cos²α

=
1 - 2cos²α + 1
2cos²α

=
2(1 - cos²α)
=
sin²α
2cos²αcos²α

= tan²α
Note : It is an identity.



Your comments will be displayed only after manual approval.