Trigonometry


  1. If
    x - tan²30°
    = sin²30° + 4 cot² 45° – sec² 60°, then the value of x is :
    1 + tan²30°









  1. View Hint View Answer Discuss in Forum

    x - x tan² 30°
    1 + tan² 30°

    = sin²30° + 4 cot²45° – sec²60°

    =1² + 4 × (1)² - (2)²
    2


    3x - x
    =
    1
    3 + 14

    ⇒ 2x =
    1
    × 4 = 1
    4

    ⇒ x =
    1
    2

    Correct Option: C

    x - x tan² 30°
    1 + tan² 30°

    = sin²30° + 4 cot²45° – sec²60°

    =1² + 4 × (1)² - (2)²
    2


    3x - x
    =
    1
    3 + 14

    ⇒ 2x =
    1
    × 4 = 1
    4

    ⇒ x =
    1
    2


  1. If cos A + sin A = √2 cos A then cos A – sin A is equal to : (where 0° < A < 90°)









  1. View Hint View Answer Discuss in Forum

    cosA + sinA = 2 cosA --- (i)
    cosA – sinA = x (let) --- (ii)
    On squaring both equation and adding
    cos²A + sin²A + 2 sinA . cosA + cos²A + sin²A – 2 sinA cosA = 2
    cos²A + x ²
    ⇒ 2 (cos²A + sin²A) = 2 cos²A + x 2
    ⇒ x² + 2 cos²A = 2
    ⇒ x² = 2 – 2 cos²A
    = 2 (1 – cos²A) = 2 sin²A
    ∴ x = √2 sin A

    Correct Option: A

    cosA + sinA = 2 cosA --- (i)
    cosA – sinA = x (let) --- (ii)
    On squaring both equation and adding
    cos²A + sin²A + 2 sinA . cosA + cos²A + sin²A – 2 sinA cosA = 2
    cos²A + x ²
    ⇒ 2 (cos²A + sin²A) = 2 cos²A + x 2
    ⇒ x² + 2 cos²A = 2
    ⇒ x² = 2 – 2 cos²A
    = 2 (1 – cos²A) = 2 sin²A
    ∴ x = √2 sin A



  1. If
    sin θ + cosθ
    = 3 then the value of sin4 q is :
    sin θ - cosθ











  1. View Hint View Answer Discuss in Forum

    sinθ + cosθ
    =
    3
    sinθ - cosθ1

    By componendo and dividendo
    sin θ + cos θ + sin θ – cosθ
    =
    3 + 1
    sin θ + cos θ - sin θ + cosθ3 - 1

    2 sinθ
    =
    4
    2 cosθ2

    ⇒ tanθ = 2
    ∴ cotθ =
    1
    2

    ∴ cosecθ = √1 + cot² θ

    ∴ sin θ =
    2
    5

    sin4θ =
    16
    25

    Correct Option: E

    sinθ + cosθ
    =
    3
    sinθ - cosθ1

    By componendo and dividendo
    sin θ + cos θ + sin θ – cosθ
    =
    3 + 1
    sin θ + cos θ - sin θ + cosθ3 - 1

    2 sinθ
    =
    4
    2 cosθ2

    ⇒ tanθ = 2
    ∴ cotθ =
    1
    2

    ∴ cosecθ = √1 + cot² θ

    ∴ sin θ =
    2
    5

    sin4θ =
    16
    25


  1. The angle of elevation of an aeroplane from a point on the ground is 45°. After flying for 15 seconds, the elevation changes to 30°. If the aeroplane is flying at a height of 2500 metres, then the speed of the aeroplane in km/ hr. is









  1. View Hint View Answer Discuss in Forum


    Let A and C be the positions of plane.
    AB = CD = 2500 metre
    BD = AC = x metre (let)
    ∠AOB = 60° ; ∠COD = 30°
    In ∆OAB,
    ⇒ OB = 2500 metre
    In ∆OCD,

    tan30° =
    CD
    OD

    1
    3

    =
    2500
    2500 + x

    ⇒ 2500 + x = 2500√3
    ⇒ x
    = 2500 √3 – 2500
    = 2500 (√3 - 1) metre
    Time = 15 seconds
    =
    15
    hour =
    1
    hour
    60 × 60240

    ∴ Speed of plane =
    2500 (√3 - 1)
    × 240 kmph
    1000

    = 600 (√3 - 1) kmph.

    Correct Option: D


    Let A and C be the positions of plane.
    AB = CD = 2500 metre
    BD = AC = x metre (let)
    ∠AOB = 60° ; ∠COD = 30°
    In ∆OAB,
    ⇒ OB = 2500 metre
    In ∆OCD,

    tan30° =
    CD
    OD

    1
    3

    =
    2500
    2500 + x

    ⇒ 2500 + x = 2500√3
    ⇒ x
    = 2500 √3 – 2500
    = 2500 (√3 - 1) metre
    Time = 15 seconds
    =
    15
    hour =
    1
    hour
    60 × 60240

    ∴ Speed of plane =
    2500 (√3 - 1)
    × 240 kmph
    1000

    = 600 (√3 - 1) kmph.



  1. A vertical tower stands on a horizontal plane and is surmounted by a vertical flag staff of height h. At a point on the plane, the angle of elevation of the bottom of the flag staff is a and that of the top of the flag staff is β. Then the height of the tower is









  1. View Hint View Answer Discuss in Forum


    Let height of tower = BC = y metre
    AB = height of flag-staff = h metre
    ∠BDC = a; ∠ADC = b
    Let, CD = x metre
    In ∆BCD,

    tan α =
    BC
    CD

    ⇒ tan α =
    y
    ..... (i)
    x

    In ∆ACD,
    tan β =
    AC
    CD

    ⇒ tan β =
    h + y
    x

    ⇒ x =
    h + y
    ..... (ii)
    tanβ

    y
    =
    h + y
    tanαtanβ

    ⇒ y tan β = h tanα + y tanα
    ⇒ y tanβ – y tanα = h tanα
    ⇒ y (tanβ – tanα) = h tanα
    ⇒ y =
    h tan α
    tanβ - tanα

    Correct Option: B


    Let height of tower = BC = y metre
    AB = height of flag-staff = h metre
    ∠BDC = a; ∠ADC = b
    Let, CD = x metre
    In ∆BCD,

    tan α =
    BC
    CD

    ⇒ tan α =
    y
    ..... (i)
    x

    In ∆ACD,
    tan β =
    AC
    CD

    ⇒ tan β =
    h + y
    x

    ⇒ x =
    h + y
    ..... (ii)
    tanβ

    y
    =
    h + y
    tanαtanβ

    ⇒ y tan β = h tanα + y tanα
    ⇒ y tanβ – y tanα = h tanα
    ⇒ y (tanβ – tanα) = h tanα
    ⇒ y =
    h tan α
    tanβ - tanα