Home » Aptitude » Trigonometry » Question
  1. A vertical tower stands on a horizontal plane and is surmounted by a vertical flag staff of height h. At a point on the plane, the angle of elevation of the bottom of the flag staff is a and that of the top of the flag staff is β. Then the height of the tower is
    1. h tanα
    2. h tan α
      tan β - tan α
    3. h tan α
      tan α - tan β
    4. None of these
Correct Option: B


Let height of tower = BC = y metre
AB = height of flag-staff = h metre
∠BDC = a; ∠ADC = b
Let, CD = x metre
In ∆BCD,

tan α =
BC
CD

⇒ tan α =
y
..... (i)
x

In ∆ACD,
tan β =
AC
CD

⇒ tan β =
h + y
x

⇒ x =
h + y
..... (ii)
tanβ

y
=
h + y
tanαtanβ

⇒ y tan β = h tanα + y tanα
⇒ y tanβ – y tanα = h tanα
⇒ y (tanβ – tanα) = h tanα
⇒ y =
h tan α
tanβ - tanα



Your comments will be displayed only after manual approval.