Trigonometry


  1. If x = a sec θ cos φ, y = b sec θ sin φ, z = c tan θ, then the value of
    +
    -
    is :









  1. View Hint View Answer Discuss in Forum

    x = a sec θ. cos φ; y = bsec θ. sin φ, z = c tan θ

    +
    -


    = sec² θ. cos² φ + sec² θ.sin² φ –
    tan² φ
    = sec² θ (cos² φ + sin² φ) – tan² θ
    = sec² θ – tan² θ = 1

    Correct Option: A

    x = a sec θ. cos φ; y = bsec θ. sin φ, z = c tan θ

    +
    -


    = sec² θ. cos² φ + sec² θ.sin² φ –
    tan² φ
    = sec² θ (cos² φ + sin² φ) – tan² θ
    = sec² θ – tan² θ = 1


  1. If
    sin θ
    =
    cos θ
    , then sin θ - cos θ is equal to
    xy









  1. View Hint View Answer Discuss in Forum

    sin θ
    =
    cos θ
    =
    1

    xyk

    ⇒ x ksin θ ; y = kcos θ
    ∴ x2 + y2
    = k²(sin²θ + cos²θ)
    ⇒ k = √x² + y²
    ∴ sin θ - cos θ
    =
    x
    -
    y
    =
    x - y

    kkk

    =
    x - y
    x² + y²

    Correct Option: C

    sin θ
    =
    cos θ
    =
    1

    xyk

    ⇒ x ksin θ ; y = kcos θ
    ∴ x2 + y2
    = k²(sin²θ + cos²θ)
    ⇒ k = √x² + y²
    ∴ sin θ - cos θ
    =
    x
    -
    y
    =
    x - y

    kkk

    =
    x - y
    x² + y²



  1. If tan θ + cot θ = 2, then the value of tann θ + cotnθ (0° < θ < 90°, n is an integer) is









  1. View Hint View Answer Discuss in Forum

    tan θ + cot θ = 2

    ⇒ tan θ +
    1
    = 2
    tan θ

    ⇒ tan⊃ θ - 2tan θ + 1 = 0
    ⇒ (tan θ - 1)² = 0
    ⇒ tanθ = 1 0 ⇒ tanθ = 1
    ∴ cot θ = ⇒ θ= 45°
    ∴ tann 45° + cotn 45° = 1 + 1 = 2

    Correct Option: A

    tan θ + cot θ = 2

    ⇒ tan θ +
    1
    = 2
    tan θ

    ⇒ tan⊃ θ - 2tan θ + 1 = 0
    ⇒ (tan θ - 1)² = 0
    ⇒ tanθ = 1 0 ⇒ tanθ = 1
    ∴ cot θ = ⇒ θ= 45°
    ∴ tann 45° + cotn 45° = 1 + 1 = 2


  1. The value of (1 + cot θ – cosec θ) (1 + tan θ + sec θ) is equal to









  1. View Hint View Answer Discuss in Forum

    ( 1 + cot θ - cosec θ) (1+ tan θ + sec θ)

    =
    sin θ + cos θ - 1
    ×
    cos θ + sin θ + 1
    sin θcos θ

    =
    (sin θ + cos θ)² - 1
    sin θ.cosθ

    =
    sin²θ + cos²θ + 2sinθ.cosθ - 1
    sin θ.cosθ

    =
    2sinθ.cosθ
    = 2
    sin θ.cosθ

    Correct Option: B

    ( 1 + cot θ - cosec θ) (1+ tan θ + sec θ)

    =
    sin θ + cos θ - 1
    ×
    cos θ + sin θ + 1
    sin θcos θ

    =
    (sin θ + cos θ)² - 1
    sin θ.cosθ

    =
    sin²θ + cos²θ + 2sinθ.cosθ - 1
    sin θ.cosθ

    =
    2sinθ.cosθ
    = 2
    sin θ.cosθ



  1. If sec θ + tan θ = 2 + √5 , then the value of sin θ + cos θ is :









  1. View Hint View Answer Discuss in Forum

    sec θ + tan θ = 2 + √3

    ∴ sin θ - tan θ =
    1
    5 + 2

    [∵ sec² θ - tan² θ = 1]
    =
    5 - 2
    = √5 - 2
    (√5 + 2)(√5 - 2)

    On adding,
    2secθ = 2 + √5 + √5 - 2 = 2√5
    ⇒ secθ = √5 ⇒ cosθ =
    1
    5

    On subtracting,
    2tanθ= 2 + √5 - √5 + 2 = 4
    ⇒ tan θ = 2
    tanθ
    = sin θ
    2
    sec θ5

    ∴ sin θ + cos θ
    2
    +
    1
    55

    =
    3
    5

    Correct Option: A

    sec θ + tan θ = 2 + √3

    ∴ sin θ - tan θ =
    1
    5 + 2

    [∵ sec² θ - tan² θ = 1]
    =
    5 - 2
    = √5 - 2
    (√5 + 2)(√5 - 2)

    On adding,
    2secθ = 2 + √5 + √5 - 2 = 2√5
    ⇒ secθ = √5 ⇒ cosθ =
    1
    5

    On subtracting,
    2tanθ= 2 + √5 - √5 + 2 = 4
    ⇒ tan θ = 2
    tanθ
    = sin θ
    2
    sec θ5

    ∴ sin θ + cos θ
    2
    +
    1
    55

    =
    3
    5