Trigonometry
- If x = a sec θ cos φ, y = b sec θ sin φ, z = c tan θ, then the value of
x² + y² - z² is : a² b² c²
-
View Hint View Answer Discuss in Forum
x = a sec θ. cos φ; y = bsec θ. sin φ, z = c tan θ
∴ x² + y² - z² a² b² c²
= sec² θ. cos² φ + sec² θ.sin² φ –
tan² φ
= sec² θ (cos² φ + sin² φ) – tan² θ
= sec² θ – tan² θ = 1Correct Option: A
x = a sec θ. cos φ; y = bsec θ. sin φ, z = c tan θ
∴ x² + y² - z² a² b² c²
= sec² θ. cos² φ + sec² θ.sin² φ –
tan² φ
= sec² θ (cos² φ + sin² φ) – tan² θ
= sec² θ – tan² θ = 1
-
If sin θ = cos θ , then sin θ - cos θ is equal to x y
-
View Hint View Answer Discuss in Forum
sin θ = cos θ = 1 x y k
⇒ x ksin θ ; y = kcos θ
∴ x2 + y2
= k²(sin²θ + cos²θ)
⇒ k = √x² + y²
∴ sin θ - cos θ= x - y = x - y k k k = x - y √x² + y²
Correct Option: C
sin θ = cos θ = 1 x y k
⇒ x ksin θ ; y = kcos θ
∴ x2 + y2
= k²(sin²θ + cos²θ)
⇒ k = √x² + y²
∴ sin θ - cos θ= x - y = x - y k k k = x - y √x² + y²
- If tan θ + cot θ = 2, then the value of tann θ + cotnθ (0° < θ < 90°, n is an integer) is
-
View Hint View Answer Discuss in Forum
tan θ + cot θ = 2
⇒ tan θ + 1 = 2 tan θ
⇒ tan⊃ θ - 2tan θ + 1 = 0
⇒ (tan θ - 1)² = 0
⇒ tanθ = 1 0 ⇒ tanθ = 1
∴ cot θ = ⇒ θ= 45°
∴ tann 45° + cotn 45° = 1 + 1 = 2
Correct Option: A
tan θ + cot θ = 2
⇒ tan θ + 1 = 2 tan θ
⇒ tan⊃ θ - 2tan θ + 1 = 0
⇒ (tan θ - 1)² = 0
⇒ tanθ = 1 0 ⇒ tanθ = 1
∴ cot θ = ⇒ θ= 45°
∴ tann 45° + cotn 45° = 1 + 1 = 2
- The value of (1 + cot θ – cosec θ) (1 + tan θ + sec θ) is equal to
-
View Hint View Answer Discuss in Forum
( 1 + cot θ - cosec θ) (1+ tan θ + sec θ)
= sin θ + cos θ - 1 × cos θ + sin θ + 1 sin θ cos θ = (sin θ + cos θ)² - 1 sin θ.cosθ = sin²θ + cos²θ + 2sinθ.cosθ - 1 sin θ.cosθ = 2sinθ.cosθ = 2 sin θ.cosθ
Correct Option: B
( 1 + cot θ - cosec θ) (1+ tan θ + sec θ)
= sin θ + cos θ - 1 × cos θ + sin θ + 1 sin θ cos θ = (sin θ + cos θ)² - 1 sin θ.cosθ = sin²θ + cos²θ + 2sinθ.cosθ - 1 sin θ.cosθ = 2sinθ.cosθ = 2 sin θ.cosθ
- If sec θ + tan θ = 2 + √5 , then the value of sin θ + cos θ is :
-
View Hint View Answer Discuss in Forum
sec θ + tan θ = 2 + √3
∴ sin θ - tan θ = 1 √5 + 2
[∵ sec² θ - tan² θ = 1]= √5 - 2 = √5 - 2 (√5 + 2)(√5 - 2)
On adding,
2secθ = 2 + √5 + √5 - 2 = 2√5⇒ secθ = √5 ⇒ cosθ = 1 √5
On subtracting,
2tanθ= 2 + √5 - √5 + 2 = 4
⇒ tan θ = 2∴ tanθ = sin θ 2 sec θ √5 ∴ sin θ + cos θ 2 + 1 √5 √5 = 3 √5
Correct Option: A
sec θ + tan θ = 2 + √3
∴ sin θ - tan θ = 1 √5 + 2
[∵ sec² θ - tan² θ = 1]= √5 - 2 = √5 - 2 (√5 + 2)(√5 - 2)
On adding,
2secθ = 2 + √5 + √5 - 2 = 2√5⇒ secθ = √5 ⇒ cosθ = 1 √5
On subtracting,
2tanθ= 2 + √5 - √5 + 2 = 4
⇒ tan θ = 2∴ tanθ = sin θ 2 sec θ √5 ∴ sin θ + cos θ 2 + 1 √5 √5 = 3 √5