Trigonometry
-  If x = a sec θ cos φ, y = b sec θ sin φ, z = c tan θ, then the value ofx² + y² - z² is : a² b² c² 
- 
                        View Hint View Answer Discuss in Forum x = a sec θ. cos φ; y = bsec θ. sin φ, z = c tan θ ∴ x² + y² - z² a² b² c² 
 = sec² θ. cos² φ + sec² θ.sin² φ –
 tan² φ
 = sec² θ (cos² φ + sin² φ) – tan² θ
 = sec² θ – tan² θ = 1Correct Option: Ax = a sec θ. cos φ; y = bsec θ. sin φ, z = c tan θ ∴ x² + y² - z² a² b² c² 
 = sec² θ. cos² φ + sec² θ.sin² φ –
 tan² φ
 = sec² θ (cos² φ + sin² φ) – tan² θ
 = sec² θ – tan² θ = 1
-  If sin θ = cos θ , then sin θ - cos θ is equal to x y 
- 
                        View Hint View Answer Discuss in Forum sin θ = cos θ = 1 x y k 
 ⇒ x ksin θ ; y = kcos θ
 ∴ x2 + y2
 = k²(sin²θ + cos²θ)
 ⇒ k = √x² + y²
 ∴ sin θ - cos θ= x - y = x - y k k k = x - y √x² + y² 
 Correct Option: Csin θ = cos θ = 1 x y k 
 ⇒ x ksin θ ; y = kcos θ
 ∴ x2 + y2
 = k²(sin²θ + cos²θ)
 ⇒ k = √x² + y²
 ∴ sin θ - cos θ= x - y = x - y k k k = x - y √x² + y² 
 
-  If tan θ + cot θ = 2, then the value of tann θ + cotnθ (0° < θ < 90°, n is an integer) is
- 
                        View Hint View Answer Discuss in Forum tan θ + cot θ = 2 ⇒ tan θ + 1 = 2 tan θ 
 ⇒ tan⊃ θ - 2tan θ + 1 = 0
 ⇒ (tan θ - 1)² = 0
 ⇒ tanθ = 1 0 ⇒ tanθ = 1
 ∴ cot θ = ⇒ θ= 45°
 ∴ tann 45° + cotn 45° = 1 + 1 = 2
 Correct Option: Atan θ + cot θ = 2 ⇒ tan θ + 1 = 2 tan θ 
 ⇒ tan⊃ θ - 2tan θ + 1 = 0
 ⇒ (tan θ - 1)² = 0
 ⇒ tanθ = 1 0 ⇒ tanθ = 1
 ∴ cot θ = ⇒ θ= 45°
 ∴ tann 45° + cotn 45° = 1 + 1 = 2
 
-  The value of (1 + cot θ – cosec θ) (1 + tan θ + sec θ) is equal to
- 
                        View Hint View Answer Discuss in Forum ( 1 + cot θ - cosec θ) (1+ tan θ + sec θ)  = sin θ + cos θ - 1 × cos θ + sin θ + 1 sin θ cos θ = (sin θ + cos θ)² - 1 sin θ.cosθ = sin²θ + cos²θ + 2sinθ.cosθ - 1 sin θ.cosθ = 2sinθ.cosθ = 2 sin θ.cosθ 
 Correct Option: B( 1 + cot θ - cosec θ) (1+ tan θ + sec θ)  = sin θ + cos θ - 1 × cos θ + sin θ + 1 sin θ cos θ = (sin θ + cos θ)² - 1 sin θ.cosθ = sin²θ + cos²θ + 2sinθ.cosθ - 1 sin θ.cosθ = 2sinθ.cosθ = 2 sin θ.cosθ 
 
-  If sec θ + tan θ = 2 + √5 , then the value of sin θ + cos θ is :
- 
                        View Hint View Answer Discuss in Forum sec θ + tan θ = 2 + √3 ∴ sin θ - tan θ = 1 √5 + 2 
 [∵ sec² θ - tan² θ = 1]= √5 - 2 = √5 - 2 (√5 + 2)(√5 - 2) 
 On adding,
 2secθ = 2 + √5 + √5 - 2 = 2√5⇒ secθ = √5 ⇒ cosθ = 1 √5 
 On subtracting,
 2tanθ= 2 + √5 - √5 + 2 = 4
 ⇒ tan θ = 2∴ tanθ = sin θ 2 sec θ √5 ∴ sin θ + cos θ 2 + 1 √5 √5 = 3 √5 
 Correct Option: Asec θ + tan θ = 2 + √3 ∴ sin θ - tan θ = 1 √5 + 2 
 [∵ sec² θ - tan² θ = 1]= √5 - 2 = √5 - 2 (√5 + 2)(√5 - 2) 
 On adding,
 2secθ = 2 + √5 + √5 - 2 = 2√5⇒ secθ = √5 ⇒ cosθ = 1 √5 
 On subtracting,
 2tanθ= 2 + √5 - √5 + 2 = 4
 ⇒ tan θ = 2∴ tanθ = sin θ 2 sec θ √5 ∴ sin θ + cos θ 2 + 1 √5 √5 = 3 √5 
 
 
	