Trigonometry
-  If sin (60° – θ) = cos (&psy; – 30°), then the value of tan (&psy; – θ) is (assume that θ and &psy; are both positive acute angles with θ < 60° and &psy; > 30°).
- 
                        View Hint View Answer Discuss in Forum sin(60° - θ ) = cos (ψ - 30°) 
 = sin (90° - &pasi; + 30°)
 = sin (120° - ψ)
 ⇒ 60° - θ = 120° - ψ
 ⇒ ψ - θ = 60°
 ∴ tan (ψ - θ) = tan 60° = √3Correct Option: Csin(60° - θ ) = cos (ψ - 30°) 
 = sin (90° - &pasi; + 30°)
 = sin (120° - ψ)
 ⇒ 60° - θ = 120° - ψ
 ⇒ ψ - θ = 60°
 ∴ tan (ψ - θ) = tan 60° = √3
-  If sec θ + tan θ = &radic3 (0° ≤ θ ≤ 90°), then tan 3θ is
- 
                        View Hint View Answer Discuss in Forum sec θ + tan θ = √3.....(i) 
 ∵ sec² θ - tan² θ = 1
 ⇒ (secθ - tanθ )(secθ + tanθ ) = 1⇒ secθ - tanθ = 1 ....(ii) √3 
 By subtracting (ii) from (i)
 secθ + tanθ - secθ + tanθ= √3 - 1 √3 ⇒ 2tan θ = 3 - 1 √3 = tan θ = 1 = tan 30° √3 
 ⇒ θ = 30°
 ∴ tan3 θ =tan 90° = undefinedCorrect Option: Asec θ + tan θ = √3.....(i) 
 ∵ sec² θ - tan² θ = 1
 ⇒ (secθ - tanθ )(secθ + tanθ ) = 1⇒ secθ - tanθ = 1 ....(ii) √3 
 By subtracting (ii) from (i)
 secθ + tanθ - secθ + tanθ= √3 - 1 √3 ⇒ 2tan θ = 3 - 1 √3 = tan θ = 1 = tan 30° √3 
 ⇒ θ = 30°
 ∴ tan3 θ =tan 90° = undefined
-  The value of (sin² 25° + sin² 65°) is :
- 
                        View Hint View Answer Discuss in Forum sin² 25° + sin² 65° 
 = sin² 25° + sin² (90° - 25°)
 = sin² 25° + cos² 25° = 1Correct Option: Bsin² 25° + sin² 65° 
 = sin² 25° + sin² (90° - 25°)
 = sin² 25° + cos² 25° = 1
-  The value of cos 1° cos 2° cos 3°....... cos 177° cos 178° cos 179° is :
- 
                        View Hint View Answer Discuss in Forum cos 90° = 0 
 ∴ cos 1°. cos 2° ... cos 179° = 0Correct Option: Acos 90° = 0 
 ∴ cos 1°. cos 2° ... cos 179° = 0
-  If sec θ = x + 1 (0° < θ < 90°), then sec θ + tan θ is equal to 4x 
- 
                        View Hint View Answer Discuss in Forum sec θ = 4x² + 1 4x 
 tan θ = √sec² θ - 1
 √[(4x² + 1 / 4x)²] - 1
 √[(4x² + 1)² - (4x)² / (4x)²](2x + 1)(2x - 1) = 4x² - 1 4x 4x ∴ sec θ + tan θ = 4x² + 1 + 4x² - 1 4x 4x = 4x² + 1 + 4x² - 1 4x = 8x² = 2x 4x 
 Correct Option: Bsec θ = 4x² + 1 4x 
 tan θ = √sec² θ - 1
 √[(4x² + 1 / 4x)²] - 1
 √[(4x² + 1)² - (4x)² / (4x)²](2x + 1)(2x - 1) = 4x² - 1 4x 4x ∴ sec θ + tan θ = 4x² + 1 + 4x² - 1 4x 4x = 4x² + 1 + 4x² - 1 4x = 8x² = 2x 4x 
 
 
	