Trigonometry


  1. If sin (60° – θ) = cos (&psy; – 30°), then the value of tan (&psy; – θ) is (assume that θ and &psy; are both positive acute angles with θ < 60° and &psy; > 30°).









  1. View Hint View Answer Discuss in Forum

    sin(60° - θ ) = cos (ψ - 30°)
    = sin (90° - &pasi; + 30°)
    = sin (120° - ψ)
    ⇒ 60° - θ = 120° - ψ
    ⇒ ψ - θ = 60°
    ∴ tan (ψ - θ) = tan 60° = √3

    Correct Option: C

    sin(60° - θ ) = cos (ψ - 30°)
    = sin (90° - &pasi; + 30°)
    = sin (120° - ψ)
    ⇒ 60° - θ = 120° - ψ
    ⇒ ψ - θ = 60°
    ∴ tan (ψ - θ) = tan 60° = √3


  1. If sec θ + tan θ = &radic3 (0° ≤ θ ≤ 90°), then tan 3θ is









  1. View Hint View Answer Discuss in Forum

    sec θ + tan θ = √3.....(i)
    ∵ sec² θ - tan² θ = 1
    ⇒ (secθ - tanθ )(secθ + tanθ ) = 1

    ⇒ secθ - tanθ =
    1
    ....(ii)
    3

    By subtracting (ii) from (i)
    secθ + tanθ - secθ + tanθ
    = √3 -
    1
    3

    ⇒ 2tan θ =
    3 - 1
    3

    = tan θ =
    1
    = tan 30°
    3

    ⇒ θ = 30°
    ∴ tan3 θ =tan 90° = undefined

    Correct Option: A

    sec θ + tan θ = √3.....(i)
    ∵ sec² θ - tan² θ = 1
    ⇒ (secθ - tanθ )(secθ + tanθ ) = 1

    ⇒ secθ - tanθ =
    1
    ....(ii)
    3

    By subtracting (ii) from (i)
    secθ + tanθ - secθ + tanθ
    = √3 -
    1
    3

    ⇒ 2tan θ =
    3 - 1
    3

    = tan θ =
    1
    = tan 30°
    3

    ⇒ θ = 30°
    ∴ tan3 θ =tan 90° = undefined



  1. The value of (sin² 25° + sin² 65°) is :









  1. View Hint View Answer Discuss in Forum

    sin² 25° + sin² 65°
    = sin² 25° + sin² (90° - 25°)
    = sin² 25° + cos² 25° = 1

    Correct Option: B

    sin² 25° + sin² 65°
    = sin² 25° + sin² (90° - 25°)
    = sin² 25° + cos² 25° = 1


  1. The value of cos 1° cos 2° cos 3°....... cos 177° cos 178° cos 179° is :









  1. View Hint View Answer Discuss in Forum

    cos 90° = 0
    ∴ cos 1°. cos 2° ... cos 179° = 0

    Correct Option: A

    cos 90° = 0
    ∴ cos 1°. cos 2° ... cos 179° = 0



  1. If sec θ = x +
    1
    (0° < θ < 90°), then sec θ + tan θ is equal to
    4x










  1. View Hint View Answer Discuss in Forum

    sec θ =
    4x² + 1
    4x

    tan θ = √sec² θ - 1
    [(4x² + 1 / 4x)²] - 1
    [(4x² + 1)² - (4x)² / (4x)²]
    (2x + 1)(2x - 1)
    =
    4x² - 1
    4x4x

    ∴ sec θ + tan θ =
    4x² + 1
    +
    4x² - 1
    4x4x

    =
    4x² + 1 + 4x² - 1
    4x

    =
    8x²
    = 2x
    4x

    Correct Option: B

    sec θ =
    4x² + 1
    4x

    tan θ = √sec² θ - 1
    [(4x² + 1 / 4x)²] - 1
    [(4x² + 1)² - (4x)² / (4x)²]
    (2x + 1)(2x - 1)
    =
    4x² - 1
    4x4x

    ∴ sec θ + tan θ =
    4x² + 1
    +
    4x² - 1
    4x4x

    =
    4x² + 1 + 4x² - 1
    4x

    =
    8x²
    = 2x
    4x