Trigonometry


  1. If 0° < q < 90°, the value of sin q + cos q is









  1. View Hint View Answer Discuss in Forum

    Z = sinθ + cosθ
    ⇒ Z² = sin²θ + cos²θ + 2 sinθ.cosθ
    = 1 + 2 sinθ. cosθ
    ∵ 0 < θ < 90°
    ∴ sinθ < 1; cosθ < 1
    ∴ 2sinθ . cosθ < 1
    and 2sinθcosθ > 1
    ⇒ Z² < 2
    ⇒ Z < √2

    Correct Option: B

    Z = sinθ + cosθ
    ⇒ Z² = sin²θ + cos²θ + 2 sinθ.cosθ
    = 1 + 2 sinθ. cosθ
    ∵ 0 < θ < 90°
    ∴ sinθ < 1; cosθ < 1
    ∴ 2sinθ . cosθ < 1
    and 2sinθcosθ > 1
    ⇒ Z² < 2
    ⇒ Z < √2


  1. If A = tan 11° tan 29°, B = 2 cot 61° cot 79°, then :









  1. View Hint View Answer Discuss in Forum

    A = tan11° . tan 29°
    B = 2 cot 61° . cot 79°
    = 2 cot (90° – 29°) cot (90° – 11°)
    = 2 tan 29° . tan 11°
    [∵ cot (90° – θ) = tan θ]
    = 2 A

    Correct Option: C

    A = tan11° . tan 29°
    B = 2 cot 61° . cot 79°
    = 2 cot (90° – 29°) cot (90° – 11°)
    = 2 tan 29° . tan 11°
    [∵ cot (90° – θ) = tan θ]
    = 2 A



  1. The value of (sin 39° / cos 51°) + 2 tan 11° tan 31° tan 45° tan 59° tan 79° – 3 (sin² 21° + sin² 69°) is :









  1. View Hint View Answer Discuss in Forum

    =
    sin 39°
    + 2 tan11°. tan (90° – 11°).tan31°. tan (90° – 59°). 1 – 3 (sin² 21° + sin² (90° – 21°)
    cos(90° - 39°)

    =
    sin 39°
    + 2 tan11°. cot11°. tan31°.cot31°–3 (sin² 21°+cos² 21°) = 1 + 2 – 3 = 0
    sin 39°

    [tan θ .cot θ = 1 , sin² θ + cos²θ = 1 ]

    Correct Option: D

    =
    sin 39°
    + 2 tan11°. tan (90° – 11°).tan31°. tan (90° – 59°). 1 – 3 (sin² 21° + sin² (90° – 21°)
    cos(90° - 39°)

    =
    sin 39°
    + 2 tan11°. cot11°. tan31°.cot31°–3 (sin² 21°+cos² 21°) = 1 + 2 – 3 = 0
    sin 39°

    [tan θ .cot θ = 1 , sin² θ + cos²θ = 1 ]


  1. sin²5° + sin²10° + sin²15° + .... + sin²85° + sin²90° is equal to









  1. View Hint View Answer Discuss in Forum

    sin θ = cos (90° – θ);
    sin (90° – θ) = cos θ
    ∴ sin 85° = sin (90° – 5°) = cos 5°
    ∴ (sin² 5° + sin² 85°) + (sin² 10° + sin² 80°) + ..... to 8 terms + sin² 45° + sin² 90°

    = 8 × 1 +
    1
    + 1 = 9
    1
    22

    Correct Option: D

    sin θ = cos (90° – θ);
    sin (90° – θ) = cos θ
    ∴ sin 85° = sin (90° – 5°) = cos 5°
    ∴ (sin² 5° + sin² 85°) + (sin² 10° + sin² 80°) + ..... to 8 terms + sin² 45° + sin² 90°

    = 8 × 1 +
    1
    + 1 = 9
    1
    22



  1. sin² 5° + sin² 6° + ... + sin² 84° + sin² 85° = ?









  1. View Hint View Answer Discuss in Forum

    Let the number of terms be n, then
    By t 2 = a + (n – 1)d
    85 = 5 + (n –1)
    ⇒ n – 1 = 85 – 5 = 80
    ⇒ n = 81
    ∴ sin²5° + sin²6°+ ... + sin²45° + ... + sin² 84° + sin² 85°
    = (sin²5° + sin²85°) + (sin²6° + ... + sin² 84°) + ..... + to (40 terms) + sin²45°
    = (sin²5° + cos25°) + (sin²6° + ... + cos² 6°) + ..... + to 40 terms + sin²45°

    Correct Option: B

    Let the number of terms be n, then
    By t 2 = a + (n – 1)d
    85 = 5 + (n –1)
    ⇒ n – 1 = 85 – 5 = 80
    ⇒ n = 81
    ∴ sin²5° + sin²6°+ ... + sin²45° + ... + sin² 84° + sin² 85°
    = (sin²5° + sin²85°) + (sin²6° + ... + sin² 84°) + ..... + to (40 terms) + sin²45°
    = (sin²5° + cos25°) + (sin²6° + ... + cos² 6°) + ..... + to 40 terms + sin²45°