Trigonometry


  1. If 0 ≤ θ ≤ (π / 2) and sec²θ + tan²θ =7, then θ is









  1. View Hint View Answer Discuss in Forum

    Using Rule 1,
    sec²θ + tan²θ = 7
    ⇒ 1 + tan²θ + tan²θ = 7
    ⇒ 2 tan²θ = 7 – 1 = 6
    ⇒ tan²θ = 3
    ⇒ tan θ = √3
    = tan 60°
    ⇒ θ = 60°
    ∵ 180° = π radian

    ∴ 60° =
    π
    × 60 =
    π
    1803

    Correct Option: B

    Using Rule 1,
    sec²θ + tan²θ = 7
    ⇒ 1 + tan²θ + tan²θ = 7
    ⇒ 2 tan²θ = 7 – 1 = 6
    ⇒ tan²θ = 3
    ⇒ tan θ = √3
    = tan 60°
    ⇒ θ = 60°
    ∵ 180° = π radian

    ∴ 60° =
    π
    × 60 =
    π
    1803


  1. From two points on the ground and lying on a straight line through the foot of a pillar, the two angles of elevation of the top of the pillar are complementary to each other. If the distances of the two points from the foot of the pillar are 12 metres and 27 metres and the two points lie on the same side of the pillar, then the height (in metres) of the pillar is









  1. View Hint View Answer Discuss in Forum


    Let, ∠ACB = θ
    ∴ ∠ADB = 90° – θ
    BC = 12 metre,
    BD = 27 metre
    AB = Pillar = h metre
    From ∆ABC,

    tan θ =
    AB
    =
    h
    ......(i)
    BC12

    From ∆ABD
    tan(90° – θ) =
    AB
    BD

    ⇒ cotθ =
    h
    ......(ii)
    27

    ∴ tanθ. cotθ =
    h
    ×
    h
    1227

    ⇒ h2 = 12 × 27
    ⇒ h2 = √12 × 27
    = √2 × 2 × 3 × 3 × 3 × 3
    = 2 × 3 × 3 = 18 metre

    Correct Option: B


    Let, ∠ACB = θ
    ∴ ∠ADB = 90° – θ
    BC = 12 metre,
    BD = 27 metre
    AB = Pillar = h metre
    From ∆ABC,

    tan θ =
    AB
    =
    h
    ......(i)
    BC12

    From ∆ABD
    tan(90° – θ) =
    AB
    BD

    ⇒ cotθ =
    h
    ......(ii)
    27

    ∴ tanθ. cotθ =
    h
    ×
    h
    1227

    ⇒ h2 = 12 × 27
    ⇒ h2 = √12 × 27
    = √2 × 2 × 3 × 3 × 3 × 3
    = 2 × 3 × 3 = 18 metre



  1. The shadow of a tower standing on a level plane is found to be 40 m longer when the sun’s altitude is 45°, than when it is 60°. The height of the tower is









  1. View Hint View Answer Discuss in Forum


    ∠ACB = 60°; BC = x metre
    CD = 40 metre, AB = Tower = h metre
    From ∆ABC,

    tan 60° =
    AB
    BC

    ⇒ √3 =
    h
    x

    ⇒ h = √3 x ...............(i)
    From ∆ABD,
    tan 45° =
    AB
    BD

    ⇒ 1 =
    h
    x + 40

    ⇒ h = x + 40 =
    h
    + 40
    3

    ⇒ h -
    h
    = 40
    3

    3h - h
    = 40
    3

    ⇒ ( √3 – 1)h = 40 √3
    ⇒ =
    40√3
    3 - 1

    ⇒ =
    40√3(√3 + 1)
    (√3 - 1)(√3 + 1)

    = 20 (3 + √3 ) metre

    Correct Option: C


    ∠ACB = 60°; BC = x metre
    CD = 40 metre, AB = Tower = h metre
    From ∆ABC,

    tan 60° =
    AB
    BC

    ⇒ √3 =
    h
    x

    ⇒ h = √3 x ...............(i)
    From ∆ABD,
    tan 45° =
    AB
    BD

    ⇒ 1 =
    h
    x + 40

    ⇒ h = x + 40 =
    h
    + 40
    3

    ⇒ h -
    h
    = 40
    3

    3h - h
    = 40
    3

    ⇒ ( √3 – 1)h = 40 √3
    ⇒ =
    40√3
    3 - 1

    ⇒ =
    40√3(√3 + 1)
    (√3 - 1)(√3 + 1)

    = 20 (3 + √3 ) metre


  1. The angle of elevation of the top of a tower of height 100 √3 metre from a point at a distance of 100 metre from the foot of the tower on a horizontal plane is









  1. View Hint View Answer Discuss in Forum


    AB = Tower = 100 √3 metre
    BC = 100 metre
    From ∆ ABC,

    tan θ =
    AB
    BC

    ⇒ tan θ =
    100√3
    = √3
    100

    ⇒ tanθ = tan 60° ⇒ θ = 60°

    Correct Option: B


    AB = Tower = 100 √3 metre
    BC = 100 metre
    From ∆ ABC,

    tan θ =
    AB
    BC

    ⇒ tan θ =
    100√3
    = √3
    100

    ⇒ tanθ = tan 60° ⇒ θ = 60°



  1. The shadow of a tower standing on a level plane is found to be 30 metre longer when the Sun’s altitude changes from 60° to 45°. The height of the tower is









  1. View Hint View Answer Discuss in Forum


    AB = Tower = h metre (let)
    CD = 30 metre
    BC = x metre (let)
    From ∆ABC,

    tan 60° =
    AB
    BC

    ⇒ √3 =
    h
    x

    ⇒ h = √3x metre ...........(i)
    From ∆ABD,
    tan 45° =
    AB
    BD

    ⇒ 1 =
    h
    x + 30

    ⇒ h = x + 30
    ⇒ h=
    h
    + 30
    3

    ⇒ √3h = h + 30 √3
    ⇒ √3h – h = 30 √3
    ⇒ h ( √3 - 1) = 30 √3
    ⇒ h =
    30√3
    =
    30√3(√3 + 1)
    3 - 1(√3 - 1)(√3 + 1)

    =
    30√3(√3 + 1)
    3 - 1

    = 15 √3 ( √3 +1)
    = 15 (3 + √3 ) metre

    Correct Option: A


    AB = Tower = h metre (let)
    CD = 30 metre
    BC = x metre (let)
    From ∆ABC,

    tan 60° =
    AB
    BC

    ⇒ √3 =
    h
    x

    ⇒ h = √3x metre ...........(i)
    From ∆ABD,
    tan 45° =
    AB
    BD

    ⇒ 1 =
    h
    x + 30

    ⇒ h = x + 30
    ⇒ h=
    h
    + 30
    3

    ⇒ √3h = h + 30 √3
    ⇒ √3h – h = 30 √3
    ⇒ h ( √3 - 1) = 30 √3
    ⇒ h =
    30√3
    =
    30√3(√3 + 1)
    3 - 1(√3 - 1)(√3 + 1)

    =
    30√3(√3 + 1)
    3 - 1

    = 15 √3 ( √3 +1)
    = 15 (3 + √3 ) metre