Trigonometry


  1. The angles of depression of two ships from the top of a light house are 45° and 30° toward east. If the ships are 200m apart, the height of the light house is (Take √3 =1.73)









  1. View Hint View Answer Discuss in Forum


    AB = Height of light-post = h metre
    CD = 200 metre;
    C and D ⇒ positions of ships
    ∠ACB = 45°; ∠ADB = 30°
    In ∆ABC,

    tan 45° =
    AB
    BC

    ⇒ 1 =
    AB
    ⇒ AB = BC = h metre
    BC

    In ∆ABD,
    tan 30° =
    AB
    BD

    1
    =
    h
    3h + 200

    ⇒ √3h = h + 200
    ⇒ √3h – h = 200
    ⇒ h (√3 - 1 ) = 200
    ⇒ h =
    200
    3
    - 1

    =
    200(√3
    + 1)
    (√3
    - 1)(√3
    + 1)

    =
    200(√3
    + 1)
    2

    = 100 (1.73 + 1) metre
    = 273 metre

    Correct Option: A


    AB = Height of light-post = h metre
    CD = 200 metre;
    C and D ⇒ positions of ships
    ∠ACB = 45°; ∠ADB = 30°
    In ∆ABC,

    tan 45° =
    AB
    BC

    ⇒ 1 =
    AB
    ⇒ AB = BC = h metre
    BC

    In ∆ABD,
    tan 30° =
    AB
    BD

    1
    =
    h
    3h + 200

    ⇒ √3h = h + 200
    ⇒ √3h – h = 200
    ⇒ h (√3 - 1 ) = 200
    ⇒ h =
    200
    3
    - 1

    =
    200(√3
    + 1)
    (√3
    - 1)(√3
    + 1)

    =
    200(√3
    + 1)
    2

    = 100 (1.73 + 1) metre
    = 273 metre


  1. A helicopter, at an altitude of 1500 metre, finds that two ships are sailing towards it, in the same direction. The angles of depression of the ships as observed from the helicopter are 60° and 30° respectively. Distance between the two ships, in metre is









  1. View Hint View Answer Discuss in Forum


    AD = Height of helicopter = 1500 metre
    C and D ⇒ positions of ships
    ∠ADB = 30°; ∠ACB = 60°
    Let, BC = x metre and BD = y metre
    In ∆ABD,

    tan 30° =
    AB
    BD

    1
    =
    1500
    3y

    ⇒ y = 1500 √3 metre ...(i)
    In ∆ABC,
    tan 60° =
    AB
    BC

    ⇒√3
    =
    1500
    x

    ⇒x =
    1500
    3

    = 500 √3 metre ...(ii)
    ∴ Distance between ships
    = (y – x) metre
    = (1500 √3 500 √3 - ) metre
    = 1000 √3 metre

    Correct Option: A


    AD = Height of helicopter = 1500 metre
    C and D ⇒ positions of ships
    ∠ADB = 30°; ∠ACB = 60°
    Let, BC = x metre and BD = y metre
    In ∆ABD,

    tan 30° =
    AB
    BD

    1
    =
    1500
    3y

    ⇒ y = 1500 √3 metre ...(i)
    In ∆ABC,
    tan 60° =
    AB
    BC

    ⇒√3
    =
    1500
    x

    ⇒x =
    1500
    3

    = 500 √3 metre ...(ii)
    ∴ Distance between ships
    = (y – x) metre
    = (1500 √3 500 √3 - ) metre
    = 1000 √3 metre



  1. From the top of a tower 60 metre high the angle of depression of the top and bottom of a pole are observed to be 45° and 60° respectively. If the pole and tower stand on the same plane, the height of the pole in metre is









  1. View Hint View Answer Discuss in Forum


    AB = height of tower = 60 metre
    BE = CD = height of pole
    = h metre
    BC = ED = x metre
    In ∆ AED,

    tan 45° =
    AE
    ED

    ⇒ 1
    =
    60 - h
    x

    60 – h ... (i)
    In ∆ ABC,
    tan 60° =
    AB
    BC

    ⇒√3
    =
    60
    x

    ⇒ √3 x = 60
    ⇒x
    =
    60
    = 20√3 metre
    3

    From equation (i),
    20 √3 = 60 – h
    ⇒ h = 60 - 20√3
    = 20 (3 - √3) metre

    Correct Option: C


    AB = height of tower = 60 metre
    BE = CD = height of pole
    = h metre
    BC = ED = x metre
    In ∆ AED,

    tan 45° =
    AE
    ED

    ⇒ 1
    =
    60 - h
    x

    60 – h ... (i)
    In ∆ ABC,
    tan 60° =
    AB
    BC

    ⇒√3
    =
    60
    x

    ⇒ √3 x = 60
    ⇒x
    =
    60
    = 20√3 metre
    3

    From equation (i),
    20 √3 = 60 – h
    ⇒ h = 60 - 20√3
    = 20 (3 - √3) metre


  1. The cliff of a mountain is 180 m high and the angles of depression of two ships on the either side of cliff are 30° and 60°. What is the distance between the two ships?









  1. View Hint View Answer Discuss in Forum


    AD = Cliff = 180 metre
    ∠ABD = 60°, ∠ACD = 30°
    From ∆ABD,

    tan 60° =
    AD
    BD

    ⇒ √3
    =
    180
    BD

    ⇒BD
    =
    180
    = 60√3
    metre
    3

    From ∆ACD,
    tan 30° =
    AD
    CD

    1
    =
    180
    3CD

    ⇒ CD = 100 √3 metre
    ∴ BC = BD + DC
    = 60 √3 + 180 √3
    = 240 √3 metre
    = (240 × 1.732) metre
    = 415.68 metre

    Correct Option: C


    AD = Cliff = 180 metre
    ∠ABD = 60°, ∠ACD = 30°
    From ∆ABD,

    tan 60° =
    AD
    BD

    ⇒ √3
    =
    180
    BD

    ⇒BD
    =
    180
    = 60√3
    metre
    3

    From ∆ACD,
    tan 30° =
    AD
    CD

    1
    =
    180
    3CD

    ⇒ CD = 100 √3 metre
    ∴ BC = BD + DC
    = 60 √3 + 180 √3
    = 240 √3 metre
    = (240 × 1.732) metre
    = 415.68 metre



  1. Two posts are 2 metres apart. Both posts are on same side of a tree. If the angles of depressions of these posts when observed from the top of the tree are 45° and 60° respectively, then the height of the tree is :









  1. View Hint View Answer Discuss in Forum


    CD = 2 metre
    BD = x metre
    AB = Tree = h metre
    From ∆ ABC,

    tan 45° =
    AB
    BC

    ⇒ 1 =
    h
    x + 2

    ⇒ h = (x + 2) metre .....(i)
    From ∆ ABD,
    tan 60° =
    AB
    BD

    ⇒ √3
    =
    h
    x

    ⇒ x
    =
    h
    ....(ii)
    3

    From equations (i) and (ii),
    h =
    h
    + 2
    3

    ⇒ h -
    h
    = 2
    3

    3
    h - h
    = 2
    3

    ⇒ h(√3 - 1) = 2 √3
    ⇒ h =
    2√3
    3
    - 1

    =
    2√3(√3
    + 1)
    (√3 - 1)(√3 + 1)

    =
    2√3(√3
    + 1)
    = √3
    (√3
    + 1)
    3 - 1

    = (3 + √3) metre

    Correct Option: B


    CD = 2 metre
    BD = x metre
    AB = Tree = h metre
    From ∆ ABC,

    tan 45° =
    AB
    BC

    ⇒ 1 =
    h
    x + 2

    ⇒ h = (x + 2) metre .....(i)
    From ∆ ABD,
    tan 60° =
    AB
    BD

    ⇒ √3
    =
    h
    x

    ⇒ x
    =
    h
    ....(ii)
    3

    From equations (i) and (ii),
    h =
    h
    + 2
    3

    ⇒ h -
    h
    = 2
    3

    3
    h - h
    = 2
    3

    ⇒ h(√3 - 1) = 2 √3
    ⇒ h =
    2√3
    3
    - 1

    =
    2√3(√3
    + 1)
    (√3 - 1)(√3 + 1)

    =
    2√3(√3
    + 1)
    = √3
    (√3
    + 1)
    3 - 1

    = (3 + √3) metre