Home » Aptitude » Trigonometry » Question
  1. The angles of depression of two ships from the top of a light house are 45° and 30° toward east. If the ships are 200m apart, the height of the light house is (Take √3 =1.73)
    1. 273 metre
    2. 270 metre
    3. 253 metre
    4. 263 metre
Correct Option: A


AB = Height of light-post = h metre
CD = 200 metre;
C and D ⇒ positions of ships
∠ACB = 45°; ∠ADB = 30°
In ∆ABC,

tan 45° =
AB
BC

⇒ 1 =
AB
⇒ AB = BC = h metre
BC

In ∆ABD,
tan 30° =
AB
BD

1
=
h
3h + 200

⇒ √3h = h + 200
⇒ √3h – h = 200
⇒ h (√3 - 1 ) = 200
⇒ h =
200
3
- 1

=
200(√3
+ 1)
(√3
- 1)(√3
+ 1)

=
200(√3
+ 1)
2

= 100 (1.73 + 1) metre
= 273 metre



Your comments will be displayed only after manual approval.