Trigonometry


  1. The value of tan 10° tan 15° tan 75° tan 80° is









  1. View Hint View Answer Discuss in Forum

    tan10°.tan15°. tan75° . tan80°
    = (tan10°. tan80°)(tan15°.tan75°)
    = (tan10°. cot10°)(tan15°.cot15°)
    = 1 × 1 = 1
    [tan(90° – θ) = cotθ; tanθ . cotθ = 1]

    Correct Option: B

    tan10°.tan15°. tan75° . tan80°
    = (tan10°. tan80°)(tan15°.tan75°)
    = (tan10°. cot10°)(tan15°.cot15°)
    = 1 × 1 = 1
    [tan(90° – θ) = cotθ; tanθ . cotθ = 1]


  1. 2sin68°
    -
    2cot15°
    -
    3tan45°.tan20°.tan40°.tan50°.tan70°
    is equal to
    cos22°5tan75°5









  1. View Hint View Answer Discuss in Forum

    2sin 68°
    -
    2cot 15°
    -
    3tan 45° . tan 20° . tan 40° tan 50° tan 70°

    cos 22°5tan 75°5

    = 2
    cos22°
    -
    2tan 75°
    -
    3.tan 20° . cot 20°tan 40° . cot 40°

    cos 22°5tan 75°5

    = 2 -
    2
    -
    3
    55

    =
    10 - 2 - 3
    = 1
    5

    Correct Option: C

    2sin 68°
    -
    2cot 15°
    -
    3tan 45° . tan 20° . tan 40° tan 50° tan 70°

    cos 22°5tan 75°5

    = 2
    cos22°
    -
    2tan 75°
    -
    3.tan 20° . cot 20°tan 40° . cot 40°

    cos 22°5tan 75°5

    = 2 -
    2
    -
    3
    55

    =
    10 - 2 - 3
    = 1
    5



  1. If α + β = 90°, then the value of (1 – sin²α) (1 – cos²α) × (1 + cot²β) (1 + tan²β) is









  1. View Hint View Answer Discuss in Forum

    (1 – sin² α) (1 – cos²α) (1 + cot²β) (1 + tan² β)
    = cos² α . sin² α . cosec² beta; sec²β
    = (cos² α . cosec² β) (sin² α . sec² β)
    = (cos² α . sec² α) (sin² &alpha . cosec² α) = 1
    [α + β = 90° ⇒ β = 90° – α cosec β = cosec (90° – α)
    = sec α ; sec β = sec (90° – α )
    = cosec α, sin α . cosec α
    = cos α . sec α = 1]

    Correct Option: A

    (1 – sin² α) (1 – cos²α) (1 + cot²β) (1 + tan² β)
    = cos² α . sin² α . cosec² beta; sec²β
    = (cos² α . cosec² β) (sin² α . sec² β)
    = (cos² α . sec² α) (sin² &alpha . cosec² α) = 1
    [α + β = 90° ⇒ β = 90° – α cosec β = cosec (90° – α)
    = sec α ; sec β = sec (90° – α )
    = cosec α, sin α . cosec α
    = cos α . sec α = 1]


  1. The expression
    tan 57° + cot 37°
    is equal to
    tan 33° + cot 53°









  1. View Hint View Answer Discuss in Forum

    tan 57° + cot 37°
    tan 33° + cot 53°

    cot 33° + tan 53°
    tan 33° + cot 53°

    [∵ tan(90° – θ) = cotθ, cot (90° – θ)= tanθ]

    =
    1 + tan 53° . tan 33°
    ×
    tan 53°
    tan 33° . tan 53° + 1tan 33°

    = tan 53° . cot 33°
    = cot 37° . tan 57°

    Correct Option: B

    tan 57° + cot 37°
    tan 33° + cot 53°

    cot 33° + tan 53°
    tan 33° + cot 53°

    [∵ tan(90° – θ) = cotθ, cot (90° – θ)= tanθ]

    =
    1 + tan 53° . tan 33°
    ×
    tan 53°
    tan 33° . tan 53° + 1tan 33°

    = tan 53° . cot 33°
    = cot 37° . tan 57°



  1. If sin 17° = (x / y) , then the value of (sec 17° – sin 73°) is









  1. View Hint View Answer Discuss in Forum

    sin 17° =
    x
    y

    cos 17° = √1 - sin² 17°


    =
    y² - x²
    y

    ∴ sec 17° =
    y
    y² - x²

    sin 73° = sin (90° – 17°) = cos 17°
    ∴ sec 17°– sin 73°
    =
    y
    -
    y² - x²
    y² - x²y

    =
    y² - y² + x²
    =
    y√y² - x²y√y² - x²

    Correct Option: B

    sin 17° =
    x
    y

    cos 17° = √1 - sin² 17°


    =
    y² - x²
    y

    ∴ sec 17° =
    y
    y² - x²

    sin 73° = sin (90° – 17°) = cos 17°
    ∴ sec 17°– sin 73°
    =
    y
    -
    y² - x²
    y² - x²y

    =
    y² - y² + x²
    =
    y√y² - x²y√y² - x²