- 
					 If the angle of elevation of the sun changes from 45° to 60°, then the length of the shadow of a pillar decreases by 10 m. The height of the pillar is :
- 
                        - 5 (3 - √3) metre
- 5 (√3 + 1) metre
- 15 √3 + 1 metre
- 5 (3 + √3) metre
 
Correct Option: D

AB = Height of pillar = h metre (let)
CD = 10 metre
∠ACB = 45°
∠ADB = 60°
BD = x metre (let)
From ∆ABC
| tan 45° = | BC | 
| ⇒ 1 = | x + 10 | 
⇒ h = (x + 10) metre (i)
From ∆ABD
| tan 60° = | BD | 
| ⇒ √3 = | x | 
| ⇒ x = | metre (ii) | √3 | 
From equation (i),
| h = | + 10 | √3 | 
| ⇒ h - | = 10 | √3 | 
| ⇒ | = 10 | √3 | 
⇒ h(√3 - 1) = 10√3
| ⇒ h = | √3- 1 | 
| = | (√3- 1)(√3+ 1) | 
| = | 3 - 1 | 
= 5√3 (√3 + 1)
= 5 (3 + √3)metre
 
	