-
From the top of a cliff 100 metre high, the angles of depression of the top and bottom of a tower are 45° and 60° respectively. The height of the tower is
-
-
100 (3 - √3) metre 3 -
100 (√3 - 1) metre 3 -
100 (2√3 - 1) metre 3 -
100 √3 - √2 metre 3
-
Correct Option: A
AB = Height of cliff = 100 metre.
CD = Height of tower = h metre.
∠ADE = 45°, ∠ACB = 60°
In ∆ABC,
tan 60° = | BC |
⇒ √3 = | BC |
⇒ BC = | metre ....(1) | √3 |
In ∆ADE,
tan 45° = | DE |
⇒ 1 = | = | BC | BC |
⇒ BC = 100 – h
∴ | = 100 - h | √3 |
⇒ h = 100 – | √3 |
= | - 100 | √3 |
= | = | √3 | 3 |
= | metre | 3 |