- 
					 A pilot in an aeroplane at an altitude of 200 metre observes two points lying on either side of a river. If the angles of depression of the two points be 45° and 60°, then the width of the river is
- 
                        -  =  200 + 200   metre √3 
-  =  200 - 200   metre √3 
- 400 √3 metre
-  =  400   metre √3 
 
-  
Correct Option: A

P = Position of pilot ;
PC = 200 metre
AB = width of river
AC = x metre (let)
CB = y metre (let)
∠PAC = 45° ; ∠PBC = 60°
In ∆ APC,
| tan45° = | AC | 
| ⇒ 1 = | x | 
⇒ x = 200 metre
In ∆ PCB,
| tan 60° = | CB | 
| ⇒ √3 = | y | 
| ⇒ y = | metre | √3 | 
∴ Width of river = x + y
| = |  | 200 + | 200 |   | metre | 
| √3 | 
 
	