-
A pilot in an aeroplane at an altitude of 200 metre observes two points lying on either side of a river. If the angles of depression of the two points be 45° and 60°, then the width of the river is
-
-
= 200 + 200 metre √3 -
= 200 - 200 metre √3 - 400 √3 metre
-
= 400 metre √3
-
Correct Option: A
P = Position of pilot ;
PC = 200 metre
AB = width of river
AC = x metre (let)
CB = y metre (let)
∠PAC = 45° ; ∠PBC = 60°
In ∆ APC,
tan45° = | AC |
⇒ 1 = | x |
⇒ x = 200 metre
In ∆ PCB,
tan 60° = | CB |
⇒ √3 = | y |
⇒ y = | metre | √3 |
∴ Width of river = x + y
= | 200 + | 200 | metre | ||
√3 |