Home » Aptitude » Trigonometry » Question
  1. If tan α = 2, then the value of
    sinα
    is
    sin3α + cos3α
    1. 2
      9
    2. 5
      9
    3. 10
      9
    4. 5√5
      9
Correct Option: C

tanα = 2
∴  sec2α = 1 + tan2α = 1 + 22
= 1 + 4 = 5

Expression =
sinα
sin3α + cos3α

=
sinα
cos3α
sin3α
+
cos3α
cos3αcos3α

=
sinα
.
1
.
1
cosα cos2α (tan3α + 1)

= tanα.sec2α.
1
(tan3α + 1)

= 2 × 5 ×
1
(23 + 1)

=
10
9



Your comments will be displayed only after manual approval.